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Abstract

The dispersion of small amplitude waves in a transversely isotropic, piezo-electric plate is discussed in respect of both
short circuit and open circuit boundary conditions. In both cases the mechanical boundary conditions are taken as
traction-free. In both cases, symmetric and anti-symmetric dispersion relations are derived, with long and short wave
approximations then established, giving phase speed, and frequency, as functions of scaled wave number. It is shown
that some particularly novel features occur within the vicinity of the associated cut-off frequencies. In particular, it is
established that for some families the cut-off frequencies depend only on elastic terms, with others depending both on
electrical and elastic terms. In each case, the appropriate asymptotic form of displacement is established. This reveals
that for motion close to some frequencies, one of the scaled displacements is an order of magnitude larger than the
electric potential, however for motion close to other frequencies the opposite situation arises. This information may
have applications for the development and design of sensing and actuating devices. The paper also provides the nec-
essary asymptotic framework for the derivation of asymptotically approximate models to fully elucidate the dynamic
response of such plates near these resonance frequencies.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The peculiar electro-mechanical coupling characteristics of piezo-electric materials have, over the past
decade or so, been widely exploited in respect of sensing devices, actuators, resonators and various smart
structures. In particular, acoustic waves in piezo-electric media are currently being used in a wide range of
sensor fields, including physical sensing, chemical sensing and bio-sensing (see Hoummady et al., 1997). The
acoustic wave (AW) family of devices includes the surface acoustic wave (SAW), the shear horizontal
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surface acoustic wave (SH SAW), the shear horizontal acoustic plate mode (SH APM), the flexural plate
wave (FPW) or Lamb wave mode and thickness shear mode (TSM) devices. Wave propagation in piezo-
electric structures therefore continues to attract considerable attention.

Recently, Jin et al. (2002) investigated Lamb wave propagation in a metallic semi-infinite medium
covered with a piezo-electric layer. Wang and Varadan (2002) also recently investigated SH waves pro-
pagating in piezo-electric layered structures, while Yang and Shue (2001) presented a theoretical and
experimental study of leaky Lamb wave (LLW) propagation in a piezo-electric plate loaded by a dielectric/
conductive fluid, the latter providing useful information for the development of liquid-based chemical
microsensors. Liu et al. (2002a,b) analyzed the propagation of symmetric and anti-symmetric Lamb waves
in piezo-electric plates with biasing electric fields. Their study indicated that for a relatively large ratio of
plate thickness to wavelength, the maximum fractional velocity change in PZT-5H plates can be up to 0.1%.
A further interesting effect, related to a negative biasing electric field, is a possible increase of the electro-
mechanical coupling coefficient, one of the most important parameters within the design of piezo-electric
sensing devices. Lamb waves present a large sensitivity to mass loading, with in particular the zero order
anti-symmetrical mode, when in contact with liquid, having a small attenuation (see for example Laurent
et al., 2000).

Wave propagation in elastic plates have been thoroughly studied (see for example Rogerson, 1997 and
Pichugin and Rogerson, 2001 and references therein). Rogerson and Kossovich (1999) studied the two-
dimensional (plane strain) dispersion relation for a transversely isotropic elastic plate. They derived
approximate representations of dispersion relations in the vicinity of their cut-off frequencies, as well as in
the short wave high frequency regime. In this paper, we study Lamb waves in a transversely isotropic,
piezo-electric plate. Following asymptotic analysis procedures employed in Rogerson and Kossovich’s
paper, long and short wave approximations for phase speed, and frequency, as functions of wave numbers,
together with estimations of the relative order of non-dimensional displacement and electric potential, are
derived. These results provide an in-depth insight of Lamb wave propagation in a piezo-electric plate.
Moreover, the analysis will be helpful for future studies of leaky Lamb wave problems, which many sensing
devices are based on. In particular, the relative asymptotic orders of mechanical displacements and electric
potential are also established. This reveals that within the vicinity of some families of cut-off frequencies the
scaled displacement in the thickness direction is much larger than scaled electric potential. However within
the vicinity of other families, the opposite situation is shown to prevail. These properties suggest that a
actuator may be more suitable for working within frequencies associated with former case and a sensor
within those associated with the latter. The asymptotic results established in this paper also provide the
necessary framework for the derivation of asymptotically approximate models to fully elucidate the dy-
namic response of such plates near these frequencies, see for example Kaplunov et al. (2000) in respect of
three-dimensional motion in transversely isotropic elastic plates.

2. Governing equations and the dispersion relations

We consider the problem of harmonic waves propagating in a plate composed of transversely isotropic
piezo-electric material. A Cartesian coordinate system is chosen so that the origin is in the mid-plane and
the plate occupies the region -2 <x<h, —co <y <00, —0o <z < oo (see Fig. 1).

The polarization direction of the piezo-electric plate is along the z-axis perpendicular to the xy-plane.
The general forms of governing equations for a piezo-electric medium can be expressed in terms of dis-
placements and electric potential as

%u, L o %u; %, %
Cij i =p—=, e —¢;
Mo ox | i axar, Lo M oxox, T ax,on

:07 i7j7kvl:172737 (1)
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l I

Fig. 1. Geometry of the plate.

where u; are displacement components, ¢ the electrical potential and p the mass density of the medium; also
ciu, ey and g are elastic constants, piezo-electric constants and dielectric constants, respectively. In
addition, we remark that in the short hand notation used in Eq. (1), x1, x,, x3 are equivalent to x, y, z; also
u1, u, and u; will also sometimes be replaced by u, v and w. Generally, the stresses ¢;; and electric dis-
placements D; are related to the displacement components and electric potential by

Gij = Cijti + € g, Di = ey — & - @)

For the problem of waves propagating along or orthogonal to the preferred direction in a transversely
isotropic piezo-electric plate, motion may be decomposed into SH and Lamb wave propagation in the xz-
plane. We are only concerned with Lamb waves, so the in-plane displacement component normal to the
propagation direction is assumed zero. This is essentially a generalized plane strain problem, in which all
quantities are independent of the co-ordinate y. In terms of the standard contracted notation of material
properties, the governing equations can be written as

Clithyy + Cagtizz + (13 + cag) W + (e31 +e15)d . = pil
(Cas + €13)thx: + CaaW iy + C313W ., + eis . + e, = pw 3, (3)
(ers +e3)uy. +eisWo +essw.. — e, — e3p ., =0
where a dot indicates differentiation with respect to time.
To facilitate subsequent numerical calculation and asymptotic analysis, it is convenient to make the

governing equations non-dimensional, a common approach in dealing with this kind of problem.
Accordingly, we now introduce non-dimensional quantities in the forms

¢ x z U u w & ey vy
= — 17 = — = — = — = — pp—
h’ h’ h’ h’ heas’ h’ @)
_ [Caa Gy _ € _ &jCy
Uo = /— Cij = —, € =—), gij = —>5 -
P Ca4 €33 €33

The governing equations may now be written in the form
enUg+ Uy + @3+ DWWy + (&3 + @15) @y = U
@+ DUgy + Wee + ey +@1s@ee + Oy =W 0. (5)
(@ +eis)Ugy +eisWee + Wy — 611 P e — &33P, =0

We now seek the solution of Eq. (5) in the form of the harmonic traveling wave

(U, W, @) = (U(&), (&), B(&)) ek, (6)
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with k = kh the non-dimensional wave number and & = v/v, the non-dimensional phase speed. Substituting
Eq. (6) into Eq. (5), we have

S -RP+R k@ +1)E ke +es)d

U
ken+D)E  LS-Rep+k0  esSH -k =0 (7)
il}(z‘}] +é15)dié éw%—]}z —511%—"—]}2533 q)

It is seen that Eq. (7) has a solution of the form (U, W, ®) = (4, B, C)e**, where A, B, C are constants.
Substituting this form of solution into Eq. (7) gives

enk — kR +E k(e +1)4 ik(es1 + e15) A A
ik(eis + )4 P —Ken+ 07 esi -k B =0. (8)
ik(es +e15)A eisht — k2 —en A2+ Kess C
In order to obtain a nontrivial solution, the determinant must be zero, thus
eng* — 1+ (e +1)g (e +eis)g
i(cs+1l)g ¢ —eu+0° esg—1 | =0, 9)
i(es1 +eis)g eisq’ — 1 —Eng” + &3
in which 2 = kq. Eq. (9) provides a cubic equation in ¢°, explicitly given by
asq® + axq* + aq* + ap = 0, (10)
where
ay = Ellé%s + Cié,
a = 5%3511 +2¢1381 + 25135%5 + 52?%5 + 0781 — 2¢11815 — €133
+ ¢110%8)1 — C11833811 + 2€13831815 — é%p
a) = Cy3E — D81 — 2613831 — 2813815 + 531533 - éilﬁz + 5%5533 (11)
— D785 — ChyBay — 2013833 — 28507 + U°8) — U283 — UoC33én
— C110°833 + C11Cn833 + 2831815833 — 28318150° + &1 — 2831,
ay = —1 + 0°C33833 + D833 — C33833 — U833 + D2
It is remarked that the roots of Eq. (9) may be either real, imaginary or complex. In passing, we note that
in the analogous purely elastic plane strain case the analogue of Eq. (10) is only a quadratic in ¢> (see

Rogerson and Kossovich, 1999). Assuming that Eq. (10) has three distinct roots, g3, g5 and ¢2, the complete
solutions of Eq. (7) can then be obtained, yielding

U 3 [ Assinh(kg,&) 3 [ D cosh(kq;&)
W b =Y < Bicosh(kq,&) p+ > < Esinh(kq,é) ¢, (12)
o i=l | C,cosh(kq;&) =1 | F;sinh(kq,¢)

where 4;, B;, C; and D,, E,;, F; are not independent; but related by B, = d;4;, C; = f;4; and E; = d,D,,
F,=fiD, (I =1,2,3), with d, and f; determined by

igi(1+ei) dgi(es+en) ) [di| _ [ —(eng; — 147 (13)
eisq; — 1 —&11q7 + &33 i —ig,(e;s+e31) )
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Eq. (12) may therefore be rewritten as

U 3 sinh(kq,&)  cosh(kq,&) y
=3 | doshika) dsinnikac) {7} (14
@ =1\ ficosh(kq,&)  f;sinh(kq;&) !

The above solutions are only valid for the case of three distinct roots ¢,(/ = 1,2, 3). When multiple roots
occur, other forms of solution are applicable. However, such forms of solution are omitted here. For our
proposed two-dimensional problem, the constitutive relation equation (2) become

o1 = Ciilly +caw: + e3¢, 033 = Ci13Uy + C33W. + e33¢7z,

o3 = cayuz +wy) +eisd,, Dy =es(uz +wy) —end,, Dy = eqju, +expw; — e, (15)
or in non-dimensional form

on =cnUg+ciW, +end,, o3 =cn3Ups + e, + @,

o3 =U,+W:+e;PD., Dy =es(U,+ W:) —e P, Dy =ey Uz + W, — e3®,, (16)

where 6;; = 6,;/cas and D; = D;/es;. Substitution of Eq. (14) into Eq. (6), and then inserting the resultant
expression into Eq. (16) yields

3 o

Gy = { > (qien + idiers + ies, fi)[cosh (kg &), + sinh(kq,g)o,]}keikm-"), (17)
=1
3 _ _ _ —

iy = { > i+ qidi + qifiers)[sinh (kg &) 4, + cosh(kq&)D)] }ke‘ (r=o9), (18)
=1

NE

Dx = { (ié15 + q]d[éw — qlﬁéu)[(sinh(l_cqlé)A; + COSh(l_qu§y>D]] }l_ceik("”). (19)
The expressions of stresses and electric potential have now been obtained. We are therefore in a position to
derive the dispersion relations by imposing appropriate boundary conditions on the upper and lower
surfaces.

~

=1

Case 1: Traction free and electrically grounded

In this case 011,013, ¢ |,—=»= 0 and hereinafter these conditions will be referred to as the short circuit
condition. Imposing these boundary conditions leads to dispersion relations for extensional and flexural
waves.

(a) Extensional waves
In the case of extensional waves, Det{a;;} = 0, where

ay = qi¢11 + 1d;ci3 + ies1 fy, axy = (i+ qid; + q.fi@:5) tanh(gk), ay = fi, (20)
or written in the following form as
H, tanh(qll}) + H, tanh(qzl}) + Hj tanh(ch) =0, (21)

in which H, (I = 1,2, 3) are constants dependent on material properties, ¢; and v. Here, for brevity, we omit
the expressions of H;. We remark that in Eq. (20) there is no implied summation over repeated suffices.
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(b) Flexural waves
In the flexural case, Det{a;,} = 0, where

ay = qicn +1dici3 +1es1 f;, ay = (i+ q.d, + q:f1e15) coth(g/k), ay = fi, (22)
or written in the following form as

H] COth(qllg) + H2 COth(CIziC) + H3 COth(q.;iC) =0. (23)

Case 2: Traction and electric charge free

These boundary conditions are reasonable when the plate is placed in the air. This type of boundary
condition will hereafter referred to as the open circuit condition. The dispersion relations can readily be
obtained and they are given below.

(a) Extensional waves
For extensional waves, the dispersion relation is provided by Det{a;,;} = 0, where

ay; = (qien +idjey3 + ies f;) coth(gk), ay =1+ qd; + q.fies,
ay = iejs + e;sq,d; — enq.fi, (24)

or written in the following form as
G1 COth(qlif) + G2 COth(qzic) + G3 COth(Q3i€) = 0, (25)

in which G, (I =1,2,3) are constants which depend on material properties, ¢, and v. Here we omit the
expressions of G; for brevity and remark that in (24) there is no implied summation over repeated suffices.

(b) Flexural waves
The flexural dispersion relation is given by Det{ay,} = 0, where

ay = (qien + idje13 + ies1 f7) tanh(g/k), ay =i+ qid; + qifies,
az = iélS + é15q/d1 - Ellqlf/a (26)

or written in the following form as

G1 tanh(qll_c) + G2 tanh(qzl;) + G3 tanh(q3/_c) =0. (27)

2.1. Numerical results

The dispersion relations (21), (23), (25) and (27) are all transcendental equations, giving scaled phase
speed ¥ as an implicit function of scaled wave number k. Since the dispersion relations are continuous
functions, and either real or purely imaginary, we can use the bisection method to solve the dispersion
relations. However, there are a few multiple roots for which bisection method does not work. For these
special cases, we employ the modified Newton method (see for example Van Loan, 1997). It should also be
noted that sinh(-) and cosh(:) should be employed for all numerical calculations, instead of tanh(-) and
coth(+), as tanh(-) and coth(-) may become infinite at some points.

Numerical calculation is made for PZT-4 piezo-electric ceramics in this paper. The material properties of
PZT-4 are taken as those reported by Wang and Noda (2002): ¢;; = 13.9 x 10'° N/m?, ¢;3 = 7.43 x 10'0 N/
m?, ¢33 = 11.3 x 10'° N/m?, c44 = 2.56 x 10'° N/m?; the piezo-electric constants are e;; = —6.98 C/m?,
e3; = 13.84 C/m?, e;5 = 13.44 C/m?; the dielectric constants are ¢;; = 60.0 x 1071 C/Vm, ¢33 = 57.4 x 10710
C/Vm.
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Some numerical results are presented in Figs. 2-9, with Figs. 2-5 showing the variation of scaled phase
velocity with scaled wave number and Figs. 6-9 scaled frequency (& = vk) against scaled wave number. For
the material parameters employed, the two scaled body wave speeds, obtained from Eq. (10) with ¢ = 0, are
given by v; = | and v, = 2.39115 and numerical results indicate that the short wave limit of all harmonics is
the lower of these two. This indicates that for the harmonics, as k — oo,  — 1 and |q| — 0. From these
figures it may also be seen that fundamental mode branches approach a wave speed slightly lower that this
body wave speed limit as k — oo. This is in fact the associated surface wave speed. These type of modes are
characterised by the roots of the secular equation (10) being either all real, or one real root accompanied by
a complex conjugate pair. A consequence of this is that the phase speed associated with each dispersion
relation is a single-valued function of wave number. A wave front traveling at the higher of the two body
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Fig. 2. Numerical solutions, scaled phase velocity against scaled wave number, of extensional dispersion relation; short circuit con-
dition.
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Fig. 3. Numerical solutions, scaled phase velocity against scaled wave number, of flexural dispersion relation; short circuit condition.
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Fig. 4. Numerical solution, scaled phase velocity against scaled wave number, of the extensional dispersion relation; open circuit
condition.
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Fig. 5. Numerical solution, scaled phase velocity against scaled wave number, of the flexural dispersion relation; open circuit condition.

wave speeds is also observed to be formed through the flattening of dispersion relation curves, indicating
turning points of the associated group velocity curves. This flattening is more pronounced in the case of
extensional waves. Unlike the case of an elastic plate, oscillations of dispersion relation curves do not occur
for these parameters. Usually oscillation occurs when the secular equation (10) has two equal roots as
k — oo. For PZT-4, Eq. (10) two equal roots will occur only when the scaled phase velocity o = 0.69636,
which lies below the surface waves speeds. In the long wave limit we note that as in the elastic case, it is only
the fundamental mode associated with extensional motion which has finite non-zero long wave phase speed
limit. In respect of all harmonics, we remark that as k — 0, 7 > 1. In Figs. 6,8,9, corresponding plots for
scaled frequency against scaled wave number are presented. These clearly show that the frequency of the
fundamental modes tend to zero in the long wave limit, with the cut-off frequencies of the harmonics all
non-zero. In the next section these numerical results will be compared with some approximations derived by
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Fig. 7. Numerical solution, scaled frequency against scaled wave number, of the flexural dispersion relation; short circuit condition.

asymptotic analysis. Although there does not appear to be much qualitative difference between extension/
flexural motion or the open/short circuit boundary conditions, we shall see that careful analysis reveals
some subtle, but non the less important, differences.

3. Analysis of the dispersion relations
3.1. Approximation near cut-off frequencies

We now seek explicit expressions for frequencies, as functions of wave number, in the long wave high
frequency regime, that is in the vicinity of the non-zero cut-off frequencies. It is seen from the last section
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Fig. 9. Numerical solution, scaled frequency against scaled wave number, of the flexural dispersion relation; open circuit condition.

that for this type of motion o — oo as k — 0. Analysis of the relative orders of the coefficients of the secular
equation (10) reveals that ¢} + ¢3 + ¢3 is O(v?), that ¢?¢3 + ¢3¢3 + ¢3¢3 is O(v*) and that ¢ig3¢3 is O(¢*).
Accordingly we deduce that two roots are of the order O(2%), with another root of order of O(1). Spe-
cifically, approximations for ¢i, g3 and g3 are given by

£=0"+0752+0@", ¢ =-0"7+0%+0@F?), (28)

with here, and throughout the paper, m = 2,3 and where

- 2 o s - . - P .
(1) €33 Q(z) T Ex3(En1€31 + Enejs + 2811815 + 2811815831 — E33€75)

— — 1 — 3 )
&1 &1
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Q(Z) _ E‘ll(é% + 2é.’)lé]S + é§1 + 511) =+ (_3]3(25%5 + 253]@15 + 6‘13511 + 25]1) — é%l
2 ¢ (els + &1 —cuén))

o _ 1 o = __fu
: ¢’ } els+en’

i (S + 1) (@ + 811 — e11én ) OF) = Exsels — 283181580, — ErsTibr, — 261183185 — E1185 805 — 28, C1380
+ &,C11C33 + 28] Cn1815 + E33@)5En — E11CnExels — &y
— 25%1513é31é15 — 5116?5 — 2?%58_2?1 - 6’335%1 — 2511@?5 — 2é15§%|
- 5?15%3 - 25?1513-

We will also need expansions for ¢, g, and g3, these are given by

(2) (2)
a1 =0 + 9 200, g =i VOWs - G 00, (29)

2,/ 0" 2¢/00
From Eq. (29) we are also now able to derive v in terms of ¢, thus
o, =—q,/0 + 07 /0, +0(g,’). (30)

We may also substitute Eq. (29) into Eq. (13) to reveal that

d =8 +0?), fi="Tt"+0(1), dy=5,/o+0(17?),
f2 = TZ/T] + 0(1773)7 d3 =S80+ 0(671)5 f3 =N+ O(ﬁil)a

where
o _ o 2) —
5 — 1(833651 + 8336% + 2€)5e31833 — 2Q§ >8%1)\/811
| = ————= —— — —— =
(8336% + ejsézzes — eysén — 6’31811)\/833
1 — 7= - N —>
(€15 + @31)v/e33
- _ 2 _ _ _ — —
s (811011Q§) — 2ese;s —6%5 —651 —811)\/011
2 — — — RN )
(811 + ese1s + els + ci3én)
_ o _ N N
7 — (€31 + ejsC13 + es1cis + elSCIIQg ))\/011 (32)
2= — — = —
(€11 + @315 + el + Ci3én)
_ 1=
S — en(0))en — 1)
3 = 9
_ _ _ _ 1
(&1 +ese1s + els + ¢i3én) Q§ )
— 1=
I ais(0)en — 1)
)=

(&1 + esiers + el + ¢13én) le)
Furthermore, using Eqgs. (29) and (31) it is possible to establish that

H =i +0@),  H=hT+0(), H=hT+0(), (33)
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where

hi” =y Q;I)EISTI Q(11>T3(_3117

hél) =/ Qél)Tl (\/ Qél)én(élst +8) + S3¢13(S, + elst)) + T <S36’13 + le)cll>v (34)

hgl) =— Q;l) \ Qg)élsTl Tien — o/ ng Q(zl)TlS3511~

Similarly, approximations for G; (i = 1,2, 3) are obtained in the form
G =ig"t* +0(?), G =g"""+0@@), G =g’ +0®), (35)

where

g = \/—Q‘gl‘)elelefsTsts +en + Qél)efsSZ)

+ 4/ le)\/ 0\ e 161 T3 (52811T3 —&1s1xSs — S38“T2>’
gé” =/ Q<21) V Q(ll) Q(31>T1511S3(811 + é%s)a (39

g§” =- Qil)Tl (6318%5T3 +enenls + le)ﬁnén + le)éf55351352

+1/ 0V enSse38, + 1/ O e el T3S, + F‘“S3El3>'

3.1.1. Short circuit condition
Extensional waves: For extensional waves, the leading order approximation of the dispersion relation
(21) is given by

in\"5 tanh (kq;) + A" tanh(kq,) + h{"#* tanh(kgs) ~ 0. (37)

Eq. (37) indicates that the dispersion relation may be asymptotically balanced only if tanh(kq,) ~ O(v?)
or tanh(kq;) ~ O(v72). In the first case, we can deduce that

kqy = 1((11 —%)n—f— re +0(124)), (38)

where I’ (11> is a constant, which is determined by substituting Eq. (38) into Eq. (37) and equating terms with
like powers of k, to obtain

1 1
ol

W= an (ol tn - hr 0l

By making use of Eq. (30), an approximation of scaled frequency @ = vk is derived, namely

2 9 7.2
@ = (n —%) %‘F (ng> +2(n —%)nfi”) §+0(k4), (40)

(
2 2

n _
ry’ =

(39)

in which the square root of the first term (n — %)an / le) defines the associated cut-off frequency. In the
second case, we deduce that

ks = i{nn—i— Ve + 0(124)}, (41)
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enabling us to infer that

(VoI Vol i + 0 tan (/o na/ /ol ) )

m _ _
I = n’nlh;, (42)
Finally, we obtain the analogue of (40) in the form
@ =n’w /O + (0 + 2nnl' )2 /O + O(K). (43)

Flexural waves: For flexural waves, with the short circuit condition, the leading order approximation of
the dispersion relation (23) is expressible as

in\Vscoth(kq,) 4 1) coth(kg,) + hi%* coth(kgs) ~ 0. (44)

From Eq. (44) we notice that in order for the dispersion relation to be asymptotically balanced, either
coth(kg,) ~ O(?) or coth(kq;) ~ O(1). In the first case, we infer that

qu::i{nn-+1§”%24-cx%4)}, (45)

which after substituting into Eq. (44) reveals that

n hy' 05/ 0
ry’ =-— . (46)
mrh(ll)\/ Q(21> + n2n2hgl) cot <nn Qél)/ Q§1)>
By using Eq. (30), the approximate expression for scaled frequency is obtainable, thus
@ =nw'w (O + (O + 2nnl )R /O + O(R). (47)
%%:QAWH@P+0@§, (48)

with I gl) a the root of the following transcendental equation

h(l) Q(l)
I oy — - VS (49)
1 1
N

Substituting Eq. (48) into Eq. (44), and making use of Eq. (49), yields
' (2(Q§”>2 oy (") =30 Qé”Qé”) +6ny0y"1/0," 0" %

F?) _ , (50)
60\"\/0\"A" (1 +cot2(r{y)
in which
%zcot(ﬂﬁ” o/ Q§”)~ (51)

Finally, we obtain the approximation

@ = (1) /08 + @erir{’ + 0Pk /0 + O(k*). (52)
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3.1.2. Open circuit condition
Extensional waves: For extensional waves, the leading order approximation of the dispersion relation
equation (25) is given by
ig\"s coth(kq, ) + g\"'7* coth(kq») + g coth(kgs) ~ 0. (53)

Eq. (53) indicates that the dispersion relation may be asymptotically balanced only if coth(kgq,) ~ O(1)
or coth(kq;) ~ O(7?). In the first case, we deduce that

kg =i{ I + TP + Ok}, (54)
where I’ (12> is determined by the following transcendental equation
(1) (1)
g9
Fiz) cot(l"gz)) =2 V= ) (35)
1 1
g’y o

with I’ f) given by

o' (20l - 30 ol /o) + et 10 0l Jole:

ro— , (56)
62y (1Y)’ 01"/ 0" (1 + ot (1))
where
% = cot (Fﬁ”\/ o/ Qé”)
The corresponding approximate expression for scaled frequency may now be derived as
@ = (Y)Y /08 + (0 +2rP )i 108 + O(k*). (57)
In the second case, it is readily established that
kqs = i{nrc + F_gz)/_cz + 0(1_64)}. (58)

Substituting Eq. (58) into Eq. (53) gives

Q(I)Q(l)g(l)
F(32) _ V& Y383 7 (59)
00+ e[
with the approximate expression for scaled frequency given by
@ =n*n? /O + (0F + 2nnl K2 /05 + O (k). (60)

Flexural waves: For flexural waves, with the open circuit condition, the leading order approximation of
the dispersion relation (27) is

ig\Vstanh(kq,) + g\"'7* tanh(kq,) + g\ tanh(kqs) ~ 0. (61)

From Eq. (61), note that the only possibilities are either tanh(kg,) ~ O(3~2) or tanh(kq3) ~ O(%?). In the
first case, we deduce that

Fgr = i{nn’ + PR+ 0(1}4)}, (62)
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with I 4(3) determined by substituting Eq. (62) into Eq. (61) and equating like powers of k, to establish that

1 1 1 1 1
nngi’\ /00 + g1V 0 tan (nm/Qé '/0} >)

ro__ . (63)
4 nzrczggl)

By use of Eq. (30), the approximate expression of scaled frequency is found to be
@ =n*n? O + (0 + 20l )k /05 + O (k). (64)
For the second case, the analogue of (62) is given by
_ . 1 _ ,
kqs = 1{ <n —§>n+F(52)k2 +O(k4)}, (65)

where, by use of previously employed procedures, I (52> is obtained as

(1) A1)
Vol 7 (66)
gV (n—1)’n tan ((n - %)ﬂm>

with the corresponding frequency approximation given by

7 1y 7 @) N\ o o
3 3

In Figs. 10-13, comparison of numerical results with asymptotic solutions for scaled frequencies in the
vicinity of cut-off frequencies is made. These figures show good agreement over a relatively large wave
number region. There are a few points related to the long wave high frequency cases which are worthy of
some further comment. We first remark that in two cases see Egs. (49), and (55), the cut-off frequencies are

ry =

34 T T T T T T T T T T T T T T

Numerical solutions
-~ Asymptotic solutions S

caled fre
=
1 1 1 1

\

|

0.0 02 04 06 08 10 12 14 16 1.8 20 22 24 26 28 3.0
Scaled wave number

Fig. 10. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; extensional case, short circuit
condition.
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Fig. 11. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; flexural case, short circuit
condition.
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Fig. 12. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; extensional case, open circuit
condition.

defined by the roots of transcendental equations, rather than explicit expressions. Although this is not the
case in the corresponding elastic problem, i.e. the traction free case, it has recently been shown to be a
feature of dispersion in incompressible elastic plates with fixed faces, see Kaplunov and Nolde (2002) and
Nolde and Rogerson (2002). However, in these studies it is only a feature of symmetric motion; whereas in
the present case it is a feature both in the extensional case, with open circuit conditions, and in the flexural
case, with the short circuit conditions. A further noteworthy point is that some of the cut-off frequencies
involve only elastic material parameters, see Eqs. (40), (47) and (64), with all other involving a combination
of both electric and elastic parameters, see Egs. (43), (49), (55), (60) and (67) and note the scales introduced
in equation (4).
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Fig. 13. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; flexural case, open circuit con-
dition.

3.2. Short wave high frequency approximation

In the short wave case, we remark that & > 1. In this case 7 > 1 and © — 1 from above, accordingly we
have ¢; = ig,, with ¢; > 0 and tending to zero in the short wave limit, indicating that

v =1+ 0147 +0(q}), (68)
where

_ _ B B S o o _
01 = (C33811 — 2¢13831 — 2€13815 + €5, C33 + €15C33 — C13833 — 2C13833 + C11C33833 + 2€31815C33 + C11 — 2€31)

/(1 + &33¢33 — &33). (69)

Corresponding approximations for g3 and g3 are given by

:=0+0), ¢=0+0(), (70)
where

0 — —2b2+\2/;§”?47{1£ o= —2b2—\2/bb'§”—74_517£ a1

3 3

and

by = —2¢3e3 — 2c 13815 + é§1533 - é§1 + 5%5533 - 5%5 - Z’%3533 — 2C13833 — 2€15 — £33 — C11833 + C11C33833

+ 2e31e15C33 — 2es1e15 + ¢ — 2es,
2 = i T R [ - - - _ o 2
by = €311 + 2¢13811 + 2C13875 + €75 + &1 — 2C11€15 — C11833 + Cr1&11 — C11C33811 + 2C13€31€15 — €5,

) _
b3 = C11€]5 +011811.
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Substituting Egs. (68) and (70) and ¢, = ig; into Eq. (13), we obtain

b =M +0@), e=if{Mm+0@},  a=i{m+o@},

(73)
fi=Nigi +0(q), ) :i{Nz'FO@%)}» S :i{N3+O(‘AI%)},
where
M — —2eses; — cnex + Q1833 — €3, — s
€33C13 + €33 + €31 + €5 ’
N o— e31C13 — 11 + 01 + e1s + @31 + e1sCi3
1 — R — — — )
(833C13 + 833 + €3 + eis)
M, — VO (OhE1811 — efs — 2eise3 — €3, — C11833)
) = —— — — — — = = =
(C1381102 — E33C13 + E110> — &33 + @3181505 — €31 + €150r — €15)
Ny — V01 (e31¢13 + €15C13 + €31 + e1s + Or¢1815 — Ci)
) = ——— —— - - — — = —
(€1381102 — &x3¢13 + €102 — &33 + e31€150> — @31 + e550r — eys)
M — VO3(0s811¢11 — el — 2ej5e31 — €3, — C1é33)
3 — 7= = — — — — — — = — )
(C1381105 — &33C13 + €105 — €33 + @3181505 — €31 + €103 — @15)
Ne VOs(e31¢13 + €15C13 + €31 + eys + Osciiers — ¢in)
’ (€1381105 — €33€13 + €103 — 633 + €3181505 — €31 + e1s03 — €i5)
Furthermore, using Egs. (70) and (73), as well setting ¢; = ig;, reveals that
=P +o@),  m=i{la 0@},  H=i{la+0@)}. (74)

where

hiz) = Nscy \/@ + NoMscis — Nacyy \/@ — N3M,c3,
héz) = NiMzc;3 — \/@511N3M2 — N3y — \/@EIINSEISNZ - NIEII\/@ - \/@M1513N3M2

- \/@Nléu\/@Mz — Mici3N; + \/@N1M3513515N2 - \/@Nﬁn\/@éls]\h

- \/Q;M1513N3515N2 + \/@N1M3513M27 (75)
h§2) = NIEII@EISN3 — \/@Nlef’lst» + Mici3N, + \/@MlélsNzMz

+ \/@M1513N2515N3 +N1611@MS - \/@NleélaélsNa — NiMscys + \/@N@n

+ \/@Z‘llNzélst + Noeqp + \/@EnNzMy

Similar approximations for G; (i = 1,2, 3) are also obtainable, namely

6 =i{egln+oa@)}  G=g’+0@), G =g’ +0@) (76)
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where
g52> = \/@3—@{?31]\’15%5]\731‘42 + Mye13sMren Ny — Mi¢13Ms811 Ny, — €31 N1 Ms211 N, — Me13e; N2 M
— enM3E 1Ny — 1185 NoMs + €11 Ma& Ns + @3Ny My Ns + ¢1182sNsMy + M €138 sN3 M,
— ey NiejsNoMs} — \/@{ESINIE%5N2 + M¢138{sN2 + M 213811N; + €11€15N> + e31N1 81N>
+cnénNa} + \/@{M1513511N3 + C11811N3 + €11815N3 + M ¢13815N; + e31N1&11 N3 + €3Ny e15N3 },

g§2> = —&lc11\/ 02/ Q3N — €11\/ D211/ O3N; + Mac13811y/ Q3N5 + €31 Na811 v/ Q3N + €1sMac131/ O3N;
+ e5e31N21/ O3N;,

&7 = &1/ 03/ 0Ny — Miisiin/ 0oy — EMicisn/OaNy — &e31N37/ 0ol + e/ 03811/ 0N
— e31N3&11v/ O2Ns.
3.2.1. Short circuit condition

Extensional waves: For extensional waves, the dispersion relation (21) has the following approximate
form:

h? tan(kqr) + kg + WS g1 ~ 0. (77)
The above equation implies that for k > 1
tan(kg1) ~ O(q1), (78)
from which we infer that
kg1 = nn+ AVE 4+ O(k2). (79)
It is now possible to substitute Eq. (78) into Eq. (77) to establish that
nw

2
Y

AV = (2 1) (50

Substituting Eq. (79) into Eq. (68), we obtain the approximate expression of scaled phase velocity in the
following form

7 =1+ 01k + 210 Ak + O (k). (81)

Flexural waves: For flexural harmonics in the short wave limit, the dispersion Eq. (23) can be represented
in the following approximate form

—h cot(kqy) + hPqy + WP g, ~ 0. (82)
From the above equation, it is seen that for k > 1
cot(kg) ~ O(q1), (83)

enabling us to deduce that

_ 1 _ _
ki = (n —§>n+A§”k1 +O(k™?) (84)



and thus
T
A = — (th> + h§2>) <n - —) ik (85)
finally arriving at
1Y ooz 1 o) ’
=1+ (n — 2) Ok + 2(}1 — 2>7IQ1A2 k3 40>k, (86)

3.2.2. Open circuit condition
Extensional waves: For extensional waves, the dispersion relation takes the following approximate form

g q1 cot(kn) + g5 + g7 ~ 0, (87)
indicating that for & > 1
cot(kgy) ~ O(g; ). (88)
We may therefore infer that
kg = nn+ APk + O(k?), (89)
which after substituting Eq. (89) into Eq. (87) reveals that
A7 = —nmg” /(85 +857). (90)

Making use of Eq. (68) an approximate for the scaled phase velocity is obtainable, namely
7 =1+ n*201k? + 2nm0 APk + O(k™) (91)

Flexural waves: For the harmonics associated with flexural modes, the dispersion relation is of the
following approximate form

—gq tan(kq,) + g5 + g5 ~ 0. (92)
From this equation we infer that for k > 1
tan(kq,) ~ O(q; "), (93)
from which we deduce that
_ 1 _ _
kg, = <n - §> n+ APk 4+ 0(k?), (94)
whence following similar lines of thought to previous, we get
1
AP =~ (=3 el (e + ) 95)
Finally, an approximation for the scaled phase velocity for this case is obtained in the form
1\, - 1 ; _
P =14+ (n - 5) POk +2 (n - 5) 1O AVE + O(k™). (96)

In Figs. 14-17 various short wave approximations of the harmonics are shown against numerical
solutions. These indicate a good agreement over a surprisingly large wave number region.
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Fig. 14. Comparison of asymptotic and numerical solutions in the short wave regime; extensional case, short circuit condition.
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Fig. 15. Comparison of asymptotic and numerical solutions in the short wave regime; flexural case, short circuit condition.

3.3. Short wavelength limit for the fundamental mode

3.3.1. Short circuit condition

In the short wave limit of the fundamental mode, k — oo and o — 1 from below, with at least one of ¢,
¢» and ¢; real and the other two either real or forming a complex conjugate pair. Both dispersion relations
for the short circuit conditions, see Egs. (21) and (23), become

H, +H, + H; = 0. (97)

3.3.2. Open circuit condition
In the open circuit case, the analogue of (97) is given by

G +G+G;=0. (98)
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Fig. 16. Comparison of asymptotic and numerical solutions in the short wave regime; extensional case, open circuit condition.
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Fig. 17. Comparison of asymptotic and numerical solutions in the short wave regime; flexural case, open circuit condition.

For piezo-electric materials, the expressions of H; and G;, i = 1,2, 3 are so complicated that it is difficult
to obtain a meaningful representation of the surface wave speed equation. However, from Egs. (97) and
(98) the speed of surface wave can be obtained numerically. For PZT-4 piezo-electric ceramics, the scaled
surface wave speed is 0.950168 and 0.957768 for short circuit and open circuit conditions, respectively. The
effect of the two different electrical boundary conditions on the surface wave speed is small for the chosen
parameters. The existence of surface waves in piezo-electric substrates is far more complicated than its
elastic counterpart. So far, it has been proved that surface waves exist on a semi-infinite piezo-electric
substrate with short circuit boundary conditions under virtually any conditions. However, for open circuit
boundary conditions, far more stringent conditions are necessary to guarantee existence of surface waves
(see Peach, 2001). Analysis of dispersion relations for a plate then provides an alternative way to compute
surface wave speeds in piezo-electric media.
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4. Relative orders: displacements and electric potential

In this section we shall just establish the relative orders of the displacement components and electric
potential within the vicinity of the various types of cut-off frequencies which exist.

4.1. Short circuit condition

Extensional waves: In this case, the dimensionless displacements and electric potential are given by

U 3 [ Ajsinh(kg$)
VI/ = Z A]d] COSh(lfqli) y (99)
@ =1 \ A4,f;cosh(kq;&)

where constants A4, satisfy the following equations

3
Z(q]Z'll + id1513 + ié31f1) COSh(i(q;)A] = 07

i=l

Z(i + qid; + q.fie1s) sinh(kg,)4, = 0, (100)

=1

3
Zf, cosh(kq;)4, = 0.

=1

(a) The first family of cut-off frequencies: In the vicinity of the first family of cut-off frequencies, we have
sinh(kq,) ~ O(1) and cosh(kg,) ~ O(k*). Also we know sinh(kgq;) ~ O(k) and cosh(kq;) ~ O(1). Analyzing
the orders of all quantities occurring in Eq. (100), we find

an(0(@*))  an(O(k))  ax(0(®)) \ [ 4
ay(0(v))  an(O(1)) ax(0(@)) [| 42 | =0. (101)

a1 (0(#?)) an(O(K’))  axn(0(v)) A3

By comparison with Eq. (37), we conclude that 4; = O(k)4, 4, = O(#*)4 and 43 = O(1)A4, where 4 is a
disposable constant. Furthermore, we can estimate the relative order of displacements and electric potential
by inserting 4;, d; and f; into Eq. (99), indicating that

U=0@®)4, W=0(1)4, &=0(1)A. (102)

In this case the leading order scaled displacement is normal to the plane of the plate and this is in fact the
asymptotically leading quantity. The elastic motion is essentially thickness stretch resonance and we recall
that in this case the cut-off frequencies depend only on elastic constants.

(b) The second family of cut-off frequencies: Following the procedure just employed for the first family of
cut-off frequency, we obtain

U=0()4, W=0)4, &=O0(®). (103)

In this case the leading order elastic displacement is in the plane of the plate and this type of motion is
essentially thickness shear resonance. Moreover, the scaled in-plane displacement is the same order as the
scaled electric potential and we recall that the cut-off frequencies are in this case dependent on both elastic
and electrical terms.
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Flexural waves: The method adopted above may now be used to estimate the relative orders of
dimensionless displacements and electric potential in the flexural case. For conciseness, we only present the
final results and omit details. In the vicinity of the first family of cut-off frequencies, we deduce

U=0@)4, W=0(1)4, &=0(1)4 (104)

In this case we recall that the cut-off frequencies depend only on elastic constants. Furthermore, we note
that the leading order displacement is in-plane, indicating shear resonance, and the scaled in-plane dis-
placement is a larger order than the scaled electric potential. For the second family of cut-off frequencies,
which in this case are dependent only on both elastic and electrical terms, the relative orders of displace-
ments and electric potential are as given by

U=0(1)4, W=0@®)4, &=O0(®)A. (105)

In this case we have thickness stretch resonance, with the leading order scaled displacement the same
order as the scaled electric potential.

4.2. Open circuit condition
For brevity, we only present the final results of relative orders and omit derivation details.
Extensional waves

(a) First family of cut-off frequencies
U=0()4, W =0(1)4, @ = O(t*)4. (106)

We remark that in this case the cut-off frequencies were dependent on both elastic and electrical terms.
Moreover, in this case the scaled electric potential is much larger than either the in-plane or normal elastic
displacement.

(b) Second family of cut-off frequencies
U=0(1)4, W =0()4, @ =0(v)4. (107)
This case is essentially shear resonance, with the in-plane scaled displacement the same order as the
scaled electric potential, the cut-off frequencies being functions of both elastic and electric constants.

Flexural waves

(a) First family of cut-off frequencies
U=0()4, W =0(1)4, @ = O(1)A4. (108)

In this case the situation is similar the flexural case for the short circuit conditions. In essence, the cut-off
frequencies are defined through elastic terms only and the scaled normal displacement asymptotically leads
both the scaled in-plane displacement and scaled electric potential, indicating thickness stretch resonance.

(b) Second family of cut-off frequencies
U=0(1)4, W = 0(v)4, @ = O(v)A. (109)

In this, the final case, we recall that the cut-off frequencies are depend on both elastic and electrical terms
and note that the in-plane scaled displacement is the leading order displacement and this is the same order
as the electric potential. The associated motion is essentially thickness shear resonance.
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In summary, there are three distinct patterns in the vicinity of cut-off frequencies. In the first case,
U =0(v)4, W = 0(1)4 and ® = O(1)4; in the second U = O(1)4, W = O(v)4 and ® = O(v)4; and in the
third U = O(v)4, W = O(1)4 and @ = O(*)4. We remark that in the first case, the scaled displacement in
the thickness direction is much larger than scaled electric potential, however in the third pattern it is the
latter which is much larger than the former. These properties suggest that an actuator may be more suitable
for working within frequencies associated with first case and a sensor within those associated with the third.

5. Concluding remarks

In this paper, a comprehensive analysis of the dispersion relations for Lamb waves in a piezo-electric
plate has been carried out. Numerical results, showing scaled phase speed, and scaled frequency, against
wave number are presented. Guided by these numerical calculations, asymptotic expansions, giving scaled
phase speed and scaled frequency as functions of wave number are derived in both the long and short wave
regimes. It is found that some families of cut-off frequencies are dependent only on elastic constants, while
others depend on both elastic and electrical material constants. Using these asymptotic results, the orders of
mechanical displacements and electrical potential are estimated for motion within the vicinity of the cut-off
frequencies. This estimation of the relative orders of displacements and electrical potential reveals that there
exist three distinct deformations patterns. In one of these deformation patterns, the scaled displacement in
the thickness direction is much larger than electric potential; in another the scaled electrical potential is one
order larger than the largest mechanical displacement, this being in the thickness direction. These properties
may be useful for the development and design of sensing and actuating devices. The asymptotic analysis has
also provided the necessary theoretical basis for the derivation of asymptotically approximate models to
elucidate motion near the cut-off frequencies. Such models have previously been derived for transversely
isotropic elastic plates, see Kaplunov et al. (2000). Work is in progress to derive similar models in the
present context and will be reported in due course.
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