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Abstract

The dispersion of small amplitude waves in a transversely isotropic, piezo-electric plate is discussed in respect of both

short circuit and open circuit boundary conditions. In both cases the mechanical boundary conditions are taken as

traction-free. In both cases, symmetric and anti-symmetric dispersion relations are derived, with long and short wave

approximations then established, giving phase speed, and frequency, as functions of scaled wave number. It is shown

that some particularly novel features occur within the vicinity of the associated cut-off frequencies. In particular, it is

established that for some families the cut-off frequencies depend only on elastic terms, with others depending both on

electrical and elastic terms. In each case, the appropriate asymptotic form of displacement is established. This reveals

that for motion close to some frequencies, one of the scaled displacements is an order of magnitude larger than the

electric potential, however for motion close to other frequencies the opposite situation arises. This information may

have applications for the development and design of sensing and actuating devices. The paper also provides the nec-

essary asymptotic framework for the derivation of asymptotically approximate models to fully elucidate the dynamic

response of such plates near these resonance frequencies.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The peculiar electro-mechanical coupling characteristics of piezo-electric materials have, over the past

decade or so, been widely exploited in respect of sensing devices, actuators, resonators and various smart

structures. In particular, acoustic waves in piezo-electric media are currently being used in a wide range of

sensor fields, including physical sensing, chemical sensing and bio-sensing (see Hoummady et al., 1997). The

acoustic wave (AW) family of devices includes the surface acoustic wave (SAW), the shear horizontal
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surface acoustic wave (SH SAW), the shear horizontal acoustic plate mode (SH APM), the flexural plate

wave (FPW) or Lamb wave mode and thickness shear mode (TSM) devices. Wave propagation in piezo-

electric structures therefore continues to attract considerable attention.

Recently, Jin et al. (2002) investigated Lamb wave propagation in a metallic semi-infinite medium
covered with a piezo-electric layer. Wang and Varadan (2002) also recently investigated SH waves pro-

pagating in piezo-electric layered structures, while Yang and Shue (2001) presented a theoretical and

experimental study of leaky Lamb wave (LLW) propagation in a piezo-electric plate loaded by a dielectric/

conductive fluid, the latter providing useful information for the development of liquid-based chemical

microsensors. Liu et al. (2002a,b) analyzed the propagation of symmetric and anti-symmetric Lamb waves

in piezo-electric plates with biasing electric fields. Their study indicated that for a relatively large ratio of

plate thickness to wavelength, the maximum fractional velocity change in PZT-5H plates can be up to 0.1%.

A further interesting effect, related to a negative biasing electric field, is a possible increase of the electro-
mechanical coupling coefficient, one of the most important parameters within the design of piezo-electric

sensing devices. Lamb waves present a large sensitivity to mass loading, with in particular the zero order

anti-symmetrical mode, when in contact with liquid, having a small attenuation (see for example Laurent

et al., 2000).

Wave propagation in elastic plates have been thoroughly studied (see for example Rogerson, 1997 and

Pichugin and Rogerson, 2001 and references therein). Rogerson and Kossovich (1999) studied the two-

dimensional (plane strain) dispersion relation for a transversely isotropic elastic plate. They derived

approximate representations of dispersion relations in the vicinity of their cut-off frequencies, as well as in
the short wave high frequency regime. In this paper, we study Lamb waves in a transversely isotropic,

piezo-electric plate. Following asymptotic analysis procedures employed in Rogerson and Kossovich�s
paper, long and short wave approximations for phase speed, and frequency, as functions of wave numbers,

together with estimations of the relative order of non-dimensional displacement and electric potential, are

derived. These results provide an in-depth insight of Lamb wave propagation in a piezo-electric plate.

Moreover, the analysis will be helpful for future studies of leaky Lamb wave problems, which many sensing

devices are based on. In particular, the relative asymptotic orders of mechanical displacements and electric

potential are also established. This reveals that within the vicinity of some families of cut-off frequencies the
scaled displacement in the thickness direction is much larger than scaled electric potential. However within

the vicinity of other families, the opposite situation is shown to prevail. These properties suggest that a

actuator may be more suitable for working within frequencies associated with former case and a sensor

within those associated with the latter. The asymptotic results established in this paper also provide the

necessary framework for the derivation of asymptotically approximate models to fully elucidate the dy-

namic response of such plates near these frequencies, see for example Kaplunov et al. (2000) in respect of

three-dimensional motion in transversely isotropic elastic plates.
2. Governing equations and the dispersion relations

We consider the problem of harmonic waves propagating in a plate composed of transversely isotropic

piezo-electric material. A Cartesian coordinate system is chosen so that the origin is in the mid-plane and

the plate occupies the region �h6 x6 h, �16 y61, �16 z61 (see Fig. 1).

The polarization direction of the piezo-electric plate is along the z-axis perpendicular to the xy-plane.
The general forms of governing equations for a piezo-electric medium can be expressed in terms of dis-
placements and electric potential as
cijkl
o2ul
oxjoxk

þ ekij
o2u

oxjoxk
¼ q

o2ui
ot2

; ejkl
o2ul
oxjoxk

� ejk
o2/

oxjoxk
¼ 0; i; j; k; l ¼ 1; 2; 3; ð1Þ



Fig. 1. Geometry of the plate.
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where ul are displacement components, / the electrical potential and q the mass density of the medium; also

cijkl, eijk and eil are elastic constants, piezo-electric constants and dielectric constants, respectively. In

addition, we remark that in the short hand notation used in Eq. (1), x1, x2, x3 are equivalent to x, y, z; also
u1, u2 and u3 will also sometimes be replaced by u, v and w. Generally, the stresses rij and electric dis-
placements Di are related to the displacement components and electric potential by
rij ¼ cijkluk;l þ elij/;l; Di ¼ eikluk;l � eil/;l: ð2Þ
For the problem of waves propagating along or orthogonal to the preferred direction in a transversely

isotropic piezo-electric plate, motion may be decomposed into SH and Lamb wave propagation in the xz-
plane. We are only concerned with Lamb waves, so the in-plane displacement component normal to the

propagation direction is assumed zero. This is essentially a generalized plane strain problem, in which all
quantities are independent of the co-ordinate y. In terms of the standard contracted notation of material

properties, the governing equations can be written as
c11u;xx þ c44u;zz þ ðc13 þ c44Þw;xz þ ðe31 þ e15Þ/;xz ¼ q€u

ðc44 þ c13Þu;xz þ c44w;xx þ c33w;zz þ e15/;xx þ e33/;zz ¼ q€w

ðe15 þ e31Þu;xz þ e15w;xx þ e33w;zz � e11/;xx � e33/;zz ¼ 0

9>=
>;; ð3Þ
where a dot indicates differentiation with respect to time.

To facilitate subsequent numerical calculation and asymptotic analysis, it is convenient to make the

governing equations non-dimensional, a common approach in dealing with this kind of problem.

Accordingly, we now introduce non-dimensional quantities in the forms
n ¼ x
h
; g ¼ z

h
; U ¼ u

h
; W ¼ w

h
; U ¼ e33/

hc44
; s ¼ tv0

h
;

v0 ¼
ffiffiffiffiffiffi
c44
q

r
; �cij ¼

cij
c44

; �eij ¼
eij
e33

; �eij ¼
eijc44
e233

:

ð4Þ
The governing equations may now be written in the form
�c11U;nn þ U;gg þ ð�c13 þ 1ÞW;ng þ ð�e31 þ �e15ÞU;ng ¼ €U

ð�c11 þ 1ÞU;ng þ W;nn þ �c33W;gg þ �e15U;nn þ Ugg ¼ €W

ð�e31 þ �e15ÞU;ng þ �e15W;nn þ W;gg � �e11U;nn � �e33Ugg ¼ 0

9>=
>;: ð5Þ
We now seek the solution of Eq. (5) in the form of the harmonic traveling wave
ðU ;W ;UÞ ¼ ð �UðnÞ; �W ðnÞ; �UðnÞÞei�kðg��vsÞ; ð6Þ
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with �k ¼ kh the non-dimensional wave number and �v ¼ v=v0 the non-dimensional phase speed. Substituting

Eq. (6) into Eq. (5), we have
�c11 d2

dn2
� �k2 þ �k2�v2 i�kð�c13 þ 1Þ d

dn i�kð�e31 þ �e15Þ d
dn

i�kð�c13 þ 1Þ d
dn

d2

dn2
� �k2�c33 þ �k2�v2 �e15 d2

dn2
� �k2

i�kð�e31 þ �e15Þ d
dn �e15 d2

dn2
� �k2 ��e11 d2

dn2
þ �k2�e33

0
BBB@

1
CCCA

�U
�W
�U

8<
:

9=
; ¼ 0: ð7Þ
It is seen that Eq. (7) has a solution of the form ð �U ; �W ; �UÞ ¼ ðA;B;CÞekn, where A;B;C are constants.

Substituting this form of solution into Eq. (7) gives
�c11k
2 � �k2 þ �k2�v2 i�kð�c13 þ 1Þk i�kð�e31 þ �e15Þk

i�kð�c13 þ 1Þk k2 � �k2�c33 þ �k2�v2 �e15k
2 � �k2

i�kð�e31 þ �e15Þk �e15k
2 � �k2 ��e11k

2 þ �k2�e33

0
B@

1
CA A

B
C

8<
:

9=
; ¼ 0: ð8Þ
In order to obtain a nontrivial solution, the determinant must be zero, thus
�c11q2 � 1þ �v2 ið�c13 þ 1Þq ið�e31 þ �e15Þq
ið�c13 þ 1Þq q2 � �c33 þ �v2 �e15q2 � 1

ið�e31 þ �e15Þq �e15q2 � 1 ��e11q2 þ �e33

�������
������� ¼ 0; ð9Þ
in which k ¼ �kq. Eq. (9) provides a cubic equation in q2, explicitly given by
a3q6 þ a2q4 þ a1q2 þ a0 ¼ 0; ð10Þ

where
a3 ¼ �c11�e215 þ �c11�e11;

a2 ¼ �c213�e11 þ 2�c13�e11 þ 2�c13�e215 þ �v2�e215 þ �v2�e11 � 2�c11�e15 � �c11�e33

þ �c11�v2�e11 � �c11�c33�e11 þ 2�c13�e31�e15 � �e231;

a1 ¼ �c33�e11 � �v2�e11 � 2�c13�e31 � 2�c13�e15 þ �e231�c33 � �e231�v
2 þ �e215�c33

� �v2�e215 � �c213�e33 � 2�c13�e33 � 2�e15�v2 þ �v4�e11 � �v2�e33 � �v2�c33�e11

� �c11�v2�e33 þ �c11�c33�e33 þ 2�e31�e15�c33 � 2�e31�e15�v2 þ �c11 � 2�e31;

a0 ¼ �1þ �v2�c33�e33 þ �v2�e33 � �c33�e33 � �v4�e33 þ �v2:

ð11Þ
It is remarked that the roots of Eq. (9) may be either real, imaginary or complex. In passing, we note that

in the analogous purely elastic plane strain case the analogue of Eq. (10) is only a quadratic in q2 (see

Rogerson and Kossovich, 1999). Assuming that Eq. (10) has three distinct roots, q21, q
2
2 and q23, the complete

solutions of Eq. (7) can then be obtained, yielding
�U
�W
�U

8<
:

9=
; ¼

X3
i¼l

Al sinhð�kqlnÞ
Bl coshð�kqlnÞ
Cl coshð�kqlnÞ

8<
:

9=
;þ

X3
l¼1

Dl coshð�kqlnÞ
El sinhð�kqlnÞ
Fl sinhð�kqlnÞ

8<
:

9=
;; ð12Þ
where Al, Bl, Cl and Dl, El, Fl are not independent; but related by Bl ¼ dlAl, Cl ¼ flAl and El ¼ dlDl,

Fl ¼ flDl ðl ¼ 1; 2; 3Þ, with dl and fl determined by
iqlð1þ �c13Þ iqlð�e15 þ �e31Þ
�e15q2l � 1 ��e11q2l þ �e33

� �
dl
fl

� �
¼ �ð�c11q2l � 1þ �v2Þ

�iqlð�e15 þ �e31Þ

 !
: ð13Þ
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Eq. (12) may therefore be rewritten as
�U
�W
�U

8<
:

9=
; ¼

X3
l¼1

sinhð�kqlnÞ coshð�kqlnÞ
dl coshð�kqlnÞ dl sinhð�kqlnÞ
fl coshð�kqlnÞ fl sinhð�kqlnÞ

0
@

1
A Al

Dl

� �
: ð14Þ
The above solutions are only valid for the case of three distinct roots qlðl ¼ 1; 2; 3Þ. When multiple roots
occur, other forms of solution are applicable. However, such forms of solution are omitted here. For our

proposed two-dimensional problem, the constitutive relation equation (2) become
r11 ¼ c11u;x þ c13w;z þ e31/;z; r33 ¼ c13u;x þ c33w;z þ e33/;z;

r13 ¼ c44ðu;z þ w;xÞ þ e15/;x; D1 ¼ e15ðu;z þ w;xÞ � e11/;x; D3 ¼ e31u;x þ e33w;z � e33/;z ð15Þ
or in non-dimensional form
�r11 ¼ �c11U;n þ �c13W;g þ �e31U;g; �r33 ¼ �c13U;n þ �c33W;g þ U;g;

�r13 ¼ U;g þ W;n þ �e15U;n; �D1 ¼ �e15ðU;g þ W;nÞ � �e11U;n; �D3 ¼ �e31U;n þ W;g � �e33U;g; ð16Þ
where �rij ¼ rij=c44 and �Di ¼ Di=e33. Substitution of Eq. (14) into Eq. (6), and then inserting the resultant

expression into Eq. (16) yields
�r11 ¼
X3
l¼1

ðql�c11

(
þ idl�c13 þ i�e31flÞ½coshð�kqlnÞAl þ sinhð�kqlnÞDl�

)
�k ei

�kðg��vsÞ; ð17Þ
�r13 ¼
X3
l¼1

ði
(

þ qldl þ qlfl�e15Þ½sinhð�kqlnÞAl þ coshð�kqlnÞDl�
)
�k ei

�kðg��vsÞ; ð18Þ
�Dx ¼
X3
l¼1

ði�e15

(
þ qldl�e15 � qlfl�e11Þ½ðsinhð�kqlnÞAl þ coshð�kqlnÞDl�

)
�k ei

�kðg��vsÞ: ð19Þ
The expressions of stresses and electric potential have now been obtained. We are therefore in a position to

derive the dispersion relations by imposing appropriate boundary conditions on the upper and lower

surfaces.

Case 1: Traction free and electrically grounded

In this case r11; r13;/ jx¼
h¼ 0 and hereinafter these conditions will be referred to as the short circuit

condition. Imposing these boundary conditions leads to dispersion relations for extensional and flexural
waves.

(a) Extensional waves

In the case of extensional waves, Detfaklg ¼ 0; where
a1l ¼ ql�c11 þ idl�c13 þ i�e31fl; a2l ¼ ðiþ qldl þ qlfl�e15Þ tanhðql�kÞ; a3l ¼ fl; ð20Þ
or written in the following form as
H1 tanhðq1�kÞ þ H2 tanhðq2�kÞ þ H3 tanhðq3�kÞ ¼ 0; ð21Þ
in which Hl ðl ¼ 1; 2; 3Þ are constants dependent on material properties, ql and �v. Here, for brevity, we omit

the expressions of Hl. We remark that in Eq. (20) there is no implied summation over repeated suffices.
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(b) Flexural waves

In the flexural case, Detfaklg ¼ 0; where
a1l ¼ ql�c11 þ idl�c13 þ i�e31fl; a2l ¼ ðiþ qldl þ qifl�e15Þ cothðql�kÞ; a3l ¼ fl; ð22Þ
or written in the following form as
H1 cothðq1�kÞ þ H2 cothðq2�kÞ þ H3 cothðq3�kÞ ¼ 0: ð23Þ
Case 2: Traction and electric charge free

These boundary conditions are reasonable when the plate is placed in the air. This type of boundary
condition will hereafter referred to as the open circuit condition. The dispersion relations can readily be

obtained and they are given below.

(a) Extensional waves

For extensional waves, the dispersion relation is provided by Detfaklg ¼ 0, where
a1l ¼ ðql�c11 þ idl�c13 þ i�e31flÞ cothðql�kÞ; a2l ¼ iþ qldl þ qlfl�e15;

a3l ¼ i�e15 þ �e15qldl � �e11qlfl; ð24Þ
or written in the following form as
G1 cothðq1�kÞ þ G2 cothðq2�kÞ þ G3 cothðq3�kÞ ¼ 0; ð25Þ
in which Gl ðl ¼ 1; 2; 3Þ are constants which depend on material properties, ql and �v. Here we omit the

expressions of Gl for brevity and remark that in (24) there is no implied summation over repeated suffices.

(b) Flexural waves

The flexural dispersion relation is given by Detfaklg ¼ 0, where
a1l ¼ ðql�c11 þ idl�c13 þ i�e31flÞ tanhðql�kÞ; a2l ¼ iþ qldl þ qlfl�e15;

a3l ¼ i�e15 þ �e15qldl � �e11qlfl; ð26Þ
or written in the following form as
G1 tanhðq1�kÞ þ G2 tanhðq2�kÞ þ G3 tanhðq3�kÞ ¼ 0: ð27Þ
2.1. Numerical results

The dispersion relations (21), (23), (25) and (27) are all transcendental equations, giving scaled phase

speed �v as an implicit function of scaled wave number �k. Since the dispersion relations are continuous
functions, and either real or purely imaginary, we can use the bisection method to solve the dispersion

relations. However, there are a few multiple roots for which bisection method does not work. For these

special cases, we employ the modified Newton method (see for example Van Loan, 1997). It should also be

noted that sinhð
Þ and coshð
Þ should be employed for all numerical calculations, instead of tanhð
Þ and

cothð
Þ, as tanhð
Þ and cothð
Þ may become infinite at some points.

Numerical calculation is made for PZT-4 piezo-electric ceramics in this paper. The material properties of

PZT-4 are taken as those reported by Wang and Noda (2002): c11 ¼ 13:9� 1010 N/m2, c13 ¼ 7:43� 1010 N/

m2, c33 ¼ 11:3� 1010 N/m2, c44 ¼ 2:56� 1010 N/m2; the piezo-electric constants are e31 ¼ �6:98 C/m2,
e33 ¼ 13:84 C/m2, e15 ¼ 13:44 C/m2; the dielectric constants are e11 ¼ 60:0� 10�10 C/Vm, e33 ¼ 57:4� 10�10

C/Vm.
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Some numerical results are presented in Figs. 2–9, with Figs. 2–5 showing the variation of scaled phase

velocity with scaled wave number and Figs. 6–9 scaled frequency ð �x ¼ �v�k) against scaled wave number. For

the material parameters employed, the two scaled body wave speeds, obtained from Eq. (10) with q ¼ 0, are

given by �v1 ¼ 1 and �v2 ¼ 2:39115 and numerical results indicate that the short wave limit of all harmonics is
the lower of these two. This indicates that for the harmonics, as �k ! 1, �v ! 1 and jqj ! 0. From these

figures it may also be seen that fundamental mode branches approach a wave speed slightly lower that this

body wave speed limit as �k ! 1. This is in fact the associated surface wave speed. These type of modes are

characterised by the roots of the secular equation (10) being either all real, or one real root accompanied by

a complex conjugate pair. A consequence of this is that the phase speed associated with each dispersion

relation is a single-valued function of wave number. A wave front traveling at the higher of the two body
Fig. 3. Numerical solutions, scaled phase velocity against scaled wave number, of flexural dispersion relation; short circuit condition.

Fig. 2. Numerical solutions, scaled phase velocity against scaled wave number, of extensional dispersion relation; short circuit con-

dition.



Fig. 4. Numerical solution, scaled phase velocity against scaled wave number, of the extensional dispersion relation; open circuit

condition.

Fig. 5. Numerical solution, scaled phase velocity against scaled wave number, of the flexural dispersion relation; open circuit condition.
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wave speeds is also observed to be formed through the flattening of dispersion relation curves, indicating
turning points of the associated group velocity curves. This flattening is more pronounced in the case of

extensional waves. Unlike the case of an elastic plate, oscillations of dispersion relation curves do not occur

for these parameters. Usually oscillation occurs when the secular equation (10) has two equal roots as
�k ! 1. For PZT-4, Eq. (10) two equal roots will occur only when the scaled phase velocity �v ¼ 0:69636,
which lies below the surface waves speeds. In the long wave limit we note that as in the elastic case, it is only

the fundamental mode associated with extensional motion which has finite non-zero long wave phase speed

limit. In respect of all harmonics, we remark that as �k ! 0, �v � 1. In Figs. 6,8,9, corresponding plots for

scaled frequency against scaled wave number are presented. These clearly show that the frequency of the
fundamental modes tend to zero in the long wave limit, with the cut-off frequencies of the harmonics all

non-zero. In the next section these numerical results will be compared with some approximations derived by



Fig. 6. Numerical solution, scaled frequency against scaled wave number, of the extensional dispersion relation; short circuit condition.

Fig. 7. Numerical solution, scaled frequency against scaled wave number, of the flexural dispersion relation; short circuit condition.
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asymptotic analysis. Although there does not appear to be much qualitative difference between extension/
flexural motion or the open/short circuit boundary conditions, we shall see that careful analysis reveals

some subtle, but non the less important, differences.
3. Analysis of the dispersion relations

3.1. Approximation near cut-off frequencies

We now seek explicit expressions for frequencies, as functions of wave number, in the long wave high
frequency regime, that is in the vicinity of the non-zero cut-off frequencies. It is seen from the last section



Fig. 9. Numerical solution, scaled frequency against scaled wave number, of the flexural dispersion relation; open circuit condition.

Fig. 8. Numerical solution, scaled frequency against scaled wave number, of the extensional dispersion relation; open circuit condition.
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that for this type of motion �v ! 1 as �k ! 0. Analysis of the relative orders of the coefficients of the secular
equation (10) reveals that q21 þ q22 þ q23 is Oð�v2Þ, that q21q22 þ q21q

2
3 þ q22q

2
3 is Oð�v4Þ and that q21q

2
2q

2
3 is Oð�v4Þ.

Accordingly we deduce that two roots are of the order Oð�v2Þ, with another root of order of Oð1Þ. Spe-
cifically, approximations for q21, q

2
2 and q23 are given by
q21 ¼ Qð1Þ
1 þ Qð2Þ

1 �v�2 þOð�v�4Þ; q2m ¼ �Qð1Þ
m �v2 þ Qð2Þ

m þOð�v�2Þ; ð28Þ
with here, and throughout the paper, m ¼ 2; 3 and where
Qð1Þ
1 ¼ �e33

�e11
; Qð2Þ

1 ¼ �e211 � �e33ð�e11�e31 þ �e11�e215 þ 2�e11�e15 þ 2�e11�e15�e31 � �e33�e215Þ
�e311

;
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Qð2Þ
2 ¼ �c11ð�e215 þ 2�e31�e15 þ �e231 þ �e11Þ þ �c13ð2�e215 þ 2�e31�e15 þ �c13�e11 þ 2�e11Þ � �e231

�c11ð�e215 þ �e11 � �c11�e11ÞÞ
;

Qð1Þ
2 ¼ 1

�c11
; Qð1Þ

3 ¼ �e11
�e215 þ �e11

;

�e11ð�e215 þ �e11Þð�e215 þ �e11 � �c11�e11ÞQð2Þ
3 ¼ �e33�e415 � 2�e31�e15�e211 � �e215�c33�e

2
11 � 2�e11�e31�e315 � �e11�e231�e

2
15 � 2�e211�c13�e

2
15

þ �e311�c11�c33 þ 2�e211�c11�e15 þ �e33�e215�e11 � �e11�c11�e33�e215 � �e311

� 2�e211�c13�e31�e15 � �e11e415 � 2�e215�e
2
11 � �c33�e311 � 2�e11�e315 � 2�e15�e211

� �e311�c
2
13 � 2�e311�c13:
We will also need expansions for q1, q2 and q3, these are given by
q1 ¼
ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
þ Qð2Þ

1

2

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q �v�2 þOð�v�4Þ; qm ¼ i

ffiffiffiffiffiffiffiffi
Qð1Þ

m

q
�v

8><
>: � Qð2Þ

m

2

ffiffiffiffiffiffiffiffi
Qð1Þ

m

q �v�1 þOð�v�3Þ

9>=
>;: ð29Þ
From Eq. (29) we are also now able to derive �v in terms of q, thus
�v2m ¼ �q2m=Q
ð1Þ
m þ Qð2Þ

m =Qð1Þ
m þOðq�2

m Þ: ð30Þ
We may also substitute Eq. (29) into Eq. (13) to reveal that
d1 ¼ S1 þOð�v�2Þ; f1 ¼ T1�v2 þOð1Þ; d2 ¼ S2=�vþOð�v�3Þ;
f2 ¼ T2=�vþOð�v�3Þ; d3 ¼ S3�vþOð�v�1Þ; f3 ¼ T3�vþOð�v�1Þ;

ð31Þ
where
S1 ¼ � ið�e33�e231 þ �e33�e215 þ 2�e15�e31�e33 � 2Qð2Þ
1 �e211Þ

ffiffiffiffiffiffi
�e11

p

ð�e33�e215 þ �e15�e33�e31 � �e15�e11 � �e31�e11Þ
ffiffiffiffiffiffi
�e33

p ;

T1 ¼
i
ffiffiffiffiffiffi
�e11

p

ð�e15 þ �e31Þ
ffiffiffiffiffiffi
�e33

p ;

S2 ¼
ð�e11�c11Qð2Þ

2 � 2�e31�e15 � �e215 � �e231 � �e11Þ
ffiffiffiffiffiffi
�c11

p

ð�e11 þ �e31�e15 þ �e215 þ �c13�e11Þ
;

T2 ¼
ð�e31 þ �e15�c13 þ �e31�c13 þ �e15�c11Q

ð2Þ
2 Þ

ffiffiffiffiffiffi
�c11

p

ð�e11 þ �e31�e15 þ �e215 þ �c13�e11Þ
;

S3 ¼
�e11ðQð1Þ

3 �c11 � 1Þ

ð�e11 þ �e31�e15 þ �e215 þ �c13�e11Þ
ffiffiffiffiffiffiffiffi
Qð1Þ

3

q ;

T3 ¼
�e15ðQð1Þ

3 �c11 � 1Þ

ð�e11 þ �e31�e15 þ �e215 þ �c13�e11Þ
ffiffiffiffiffiffiffiffi
Qð1Þ

3

q :

ð32Þ
Furthermore, using Eqs. (29) and (31) it is possible to establish that
H1 ¼ ihð1Þ1 �v4 þOð�v2Þ; H2 ¼ hð1Þ2 �v3 þOð�vÞ; H3 ¼ hð1Þ3 �v5 þOð�v3Þ; ð33Þ
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where
hð1Þ1 ¼ �
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
�e15T1

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
T3�c11;

hð1Þ2 ¼
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
T1

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
�c11ð�e15T2

�
þ S2Þ þ S3�c13ðS2 þ �e15T2Þ

�
þ T1 S3�c13

�
þ

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
�c11

�
;

hð1Þ3 ¼ �
ffiffiffiffiffiffiffiffi
Qð1Þ

3

q ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
�e15T1T3�c11 �

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
T1S3�c11:

ð34Þ
Similarly, approximations for Gi ði ¼ 1; 2; 3Þ are obtained in the form
G1 ¼ igð1Þ1 �v4 þOð�v2Þ; G2 ¼ gð1Þ2 �v5 þOð�v3Þ; G3 ¼ gð1Þ3 �v3 þOð�vÞ; ð35Þ

where
gð1Þ1 ¼
ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
�e31T1�e215T3 �e215

�
þ e11 þ

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
�e215S2

�

þ
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
�e31T1S2e11T3 S2e11T3

�
� �e215T2S3 � S3e11T2

�
;

gð1Þ2 ¼
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q ffiffiffiffiffiffiffiffi
Qð1Þ

1

q ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
T1�c11S3ðe11 þ �e215Þ;

gð1Þ3 ¼ �
ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
T1 �e31�e215T3

�
þ �e31e11T3 þ

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
e11�c11 þ

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
�e215S3�c13S2

þ
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
e11S3�c13S2 þ

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
�e31�e215T3S2 þ e11S3�c13

�
:

ð36Þ
3.1.1. Short circuit condition

Extensional waves: For extensional waves, the leading order approximation of the dispersion relation

(21) is given by
ihð1Þ1 �v tanhð�kq1Þ þ hð1Þ2 tanhð�kq2Þ þ hð1Þ3 �v2 tanhð�kq3Þ � 0: ð37Þ

Eq. (37) indicates that the dispersion relation may be asymptotically balanced only if tanhð�kq2Þ � Oð�v2Þ

or tanhð�kq3Þ � Oð�v�2Þ. In the first case, we can deduce that
�kq2 ¼ i n
��

� 1

2

�
p þ Cð1Þ

1
�k2 þOð�k4Þ

�
; ð38Þ
where Cð1Þ
1 is a constant, which is determined by substituting Eq. (38) into Eq. (37) and equating terms with

like powers of �k, to obtain
Cð1Þ
1 ¼ hð1Þ2 Qð1Þ

2

hð1Þ3 n� 1
2

� �2
p2 tan

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
ðn� 1

2
Þp=

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q� � : ð39Þ
By making use of Eq. (30), an approximation of scaled frequency �x ¼ �v�k is derived, namely
�x2 ¼ n
�

� 1

2

�2 p2

Qð1Þ
2

þ Qð2Þ
2

�
þ 2 n
�

� 1

2

�
pCð1Þ

1

� �k2

Qð1Þ
2

þOð�k4Þ; ð40Þ
in which the square root of the first term ðn� 1
2
Þ2p2=Qð1Þ

2 defines the associated cut-off frequency. In the
second case, we deduce that
�kq3 ¼ i np
n

þ Cð1Þ
2
�k2 þOð�k4Þ

o
; ð41Þ
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enabling us to infer that
Cð1Þ
2 ¼ �

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
hð1Þ1 np þ Qð1Þ

3 h2 tan
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
np=

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q� �� �
n2p2h3

: ð42Þ
Finally, we obtain the analogue of (40) in the form
�x2 ¼ n2p2=Qð1Þ
3 þ ðQð2Þ

3 þ 2npCð1Þ
2 Þ�k2=Qð1Þ

3 þOð�k4Þ: ð43Þ

Flexural waves: For flexural waves, with the short circuit condition, the leading order approximation of

the dispersion relation (23) is expressible as
ihð1Þ1 �v cothð�kq1Þ þ hð1Þ2 cothð�kq2Þ þ hð1Þ3 �v2 cothð�kq3Þ � 0: ð44Þ
From Eq. (44) we notice that in order for the dispersion relation to be asymptotically balanced, either

cothð�kq2Þ � Oð�v2Þ or cothð�kq3Þ � Oð1Þ. In the first case, we infer that
�kq2 ¼ i np
n

þ Cð1Þ
3
�k2 þOð�k4Þ

o
; ð45Þ
which after substituting into Eq. (44) reveals that
Cð1Þ
3 ¼ �

hð1Þ2 Qð1Þ
2

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
nphð1Þ1

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
þ n2p2hð1Þ3 cot np

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
=

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q� � : ð46Þ
By using Eq. (30), the approximate expression for scaled frequency is obtainable, thus
�x2 ¼ n2p2=Qð1Þ
2 þ ðQð2Þ

2 þ 2npCð1Þ
3 Þ�k2=Qð1Þ

2 þOð�k4Þ: ð47Þ

�kq3 ¼ i Cð1Þ
4

n
þ Cð1Þ

5
�k2 þOð�k4Þ

o
; ð48Þ
with Cð1Þ
4 a the root of the following transcendental equation
Cð1Þ
4 cotðCð1Þ

4 Þ ¼ �
hð1Þ1

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
hð1Þ3

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q : ð49Þ
Substituting Eq. (48) into Eq. (44), and making use of Eq. (49), yields
Cð1Þ
5 ¼

hð1Þ1 2ðQð1Þ
1 Þ2

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
ðCð1Þ

4 Þ2 � 3Qð2Þ
1

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
Qð1Þ

3

� �
þ 6hð1Þ2 Qð1Þ

3

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
Qð1Þ

1 Cð1Þ
4 C4

6Qð1Þ
1

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
hð1Þ3 ðCð1Þ

4 Þ3ð1þ cot2ðCð1Þ
4 ÞÞ

; ð50Þ
in which
C4 ¼ cot Cð1Þ
4

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
=

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q� �
: ð51Þ
Finally, we obtain the approximation
�x2 ¼ ðCð1Þ
4 Þ2=Qð1Þ

3 þ ð2Cð1Þ
4 Cð1Þ

5 þ Qð2Þ
3 Þ�k2=Qð1Þ

3 þOð�k4Þ: ð52Þ
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3.1.2. Open circuit condition

Extensional waves: For extensional waves, the leading order approximation of the dispersion relation

equation (25) is given by
igð1Þ1 �v cothð�kq1Þ þ gð1Þ2 �v2 cothð�kq2Þ þ gð1Þ3 cothð�kq3Þ � 0: ð53Þ

Eq. (53) indicates that the dispersion relation may be asymptotically balanced only if cothð�kq2Þ � Oð1Þ

or cothð�kq3Þ � Oð�v2Þ. In the first case, we deduce that
�kq2 ¼ i Cð2Þ
1

n
þ Cð2Þ

2
�k2 þOð�k4Þ

o
; ð54Þ
where Cð2Þ
1 is determined by the following transcendental equation
Cð2Þ
1 cotðCð2Þ

1 Þ ¼ �
gð1Þ1

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
gð1Þ2

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q ; ð55Þ
with Cð2Þ
2 given by
Cð2Þ
2 ¼

gð1Þ1 2ðCð2Þ
1 Þ2ðQð1Þ

1 Þ2
ffiffiffiffiffiffiffiffi
Qð1Þ

2

q
� 3Qð2Þ

1 Qð1Þ
2

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q� �
þ 6gð1Þ3 Cð2Þ

1 Qð1Þ
1 Qð1Þ

2

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
C2

6gð1Þ2 ðCð2Þ
1 Þ3Qð1Þ

1

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
ð1þ cot2ðCð2Þ

1 ÞÞ
; ð56Þ
where
C2 ¼ cot Cð2Þ
1

ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
=

ffiffiffiffiffiffiffiffi
Qð1Þ

2

q� �
:

The corresponding approximate expression for scaled frequency may now be derived as
�x2 ¼ ðCð2Þ
1 Þ2=Qð1Þ

2 þ ðQð2Þ
2 þ 2Cð2Þ

1 Cð2Þ
2 Þ�k2=Qð1Þ

2 þOð�k4Þ: ð57Þ

In the second case, it is readily established that
�kq3 ¼ i np
n

þ Cð2Þ
3
�k2 þOð�k4Þ

o
: ð58Þ
Substituting Eq. (58) into Eq. (53) gives
Cð2Þ
3 ¼ �

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
Qð1Þ

3 gð1Þ3

np
ffiffiffiffiffiffiffiffi
Qð1Þ

3

q
gð1Þ1 þ n2p2

ffiffiffiffiffiffiffiffi
Qð1Þ

1

q
gð1Þ2

; ð59Þ
with the approximate expression for scaled frequency given by
�x2 ¼ n2p2=Qð1Þ
3 þ ðQð2Þ

3 þ 2npCð2Þ
3 Þ�k2=Qð1Þ

3 þOð�k4Þ: ð60Þ

Flexural waves: For flexural waves, with the open circuit condition, the leading order approximation of

the dispersion relation (27) is
igð1Þ1 �v tanhð�kq1Þ þ gð1Þ2 �v2 tanhð�kq2Þ þ gð1Þ3 tanhð�kq3Þ � 0: ð61Þ
From Eq. (61), note that the only possibilities are either tanhð�kq2Þ � Oð�v�2Þ or tanhð�kq3Þ � Oð�v2Þ. In the

first case, we deduce that
�kq2 ¼ i np
n

þ Cð2Þ
4
�k2 þOð�k4Þ

o
; ð62Þ
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with Cð2Þ
4 determined by substituting Eq. (62) into Eq. (61) and equating like powers of �k, to establish that
Fig. 10

condit
Cð2Þ
4 ¼ �

npgð1Þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qð1Þ

1 Qð1Þ
2

q
þ gð1Þ3 Qð1Þ

2 tan np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qð1Þ

3 =Qð1Þ
2

q� �
n2p2gð1Þ2

: ð63Þ
By use of Eq. (30), the approximate expression of scaled frequency is found to be
�x2 ¼ n2p2=Qð1Þ
2 þ ðQð2Þ

2 þ 2npCð2Þ
4 Þ�k2=Qð1Þ

2 þOð�k4Þ: ð64Þ
For the second case, the analogue of (62) is given by
�kq3 ¼ i n
��

� 1

2

�
p þ Cð2Þ

5
�k2 þOð�k4Þ

�
; ð65Þ
where, by use of previously employed procedures, Cð2Þ
5 is obtained as
Cð2Þ
5 ¼ gð1Þ3 Qð1Þ

3

gð1Þ2 n� 1
2

� �2
p2 tan n� 1

2

� �
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qð1Þ

2 =Qð1Þ
3

q� � ; ð66Þ
with the corresponding frequency approximation given by
�x2 ¼ n
�

� 1

2

�2 p2

Qð1Þ
3

þ Qð2Þ
3

�
þ 2 n
�

� 1

2

�
pCð2Þ

5

� �k2

Qð1Þ
3

þOð�k4Þ: ð67Þ
In Figs. 10–13, comparison of numerical results with asymptotic solutions for scaled frequencies in the

vicinity of cut-off frequencies is made. These figures show good agreement over a relatively large wave

number region. There are a few points related to the long wave high frequency cases which are worthy of
some further comment. We first remark that in two cases see Eqs. (49), and (55), the cut-off frequencies are
. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; extensional case, short circuit

ion.



Fig. 11. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; flexural case, short circuit

condition.

Fig. 12. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; extensional case, open circuit

condition.
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defined by the roots of transcendental equations, rather than explicit expressions. Although this is not the
case in the corresponding elastic problem, i.e. the traction free case, it has recently been shown to be a

feature of dispersion in incompressible elastic plates with fixed faces, see Kaplunov and Nolde (2002) and

Nolde and Rogerson (2002). However, in these studies it is only a feature of symmetric motion; whereas in

the present case it is a feature both in the extensional case, with open circuit conditions, and in the flexural

case, with the short circuit conditions. A further noteworthy point is that some of the cut-off frequencies

involve only elastic material parameters, see Eqs. (40), (47) and (64), with all other involving a combination

of both electric and elastic parameters, see Eqs. (43), (49), (55), (60) and (67) and note the scales introduced

in equation (4).



Fig. 13. Comparison of asymptotic and numerical solutions in the vicinity of the cut-off frequencies; flexural case, open circuit con-

dition.
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3.2. Short wave high frequency approximation

In the short wave case, we remark that �k � 1. In this case �v > 1 and �v ! 1 from above, accordingly we

have q1 ¼ iq̂1, with q̂1 > 0 and tending to zero in the short wave limit, indicating that
�v2 ¼ 1þ Q1q̂21 þOðq̂41Þ; ð68Þ
where
Q1 ¼ ð�c33�e11 � 2�c13�e31 � 2�c13�e15 þ �e231�c33 þ �e215�c33 � �c213�e33 � 2�c13�e33 þ �c11�c33�e33 þ 2�e31�e15�c33 þ �c11 � 2�e31Þ
=ð1þ �e33�c33 � �e33Þ: ð69Þ
Corresponding approximations for q22 and q23 are given by
q22 ¼ Q2 þOðq̂21Þ; q23 ¼ Q3 þOðq̂21Þ; ð70Þ
where
Q2 ¼
�2b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � 4b1b3

p
2b3

 !
; Q3 ¼

�2b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � 4b1b3

p
2b3

 !
ð71Þ
and
b1 ¼ �2�c13�e31 � 2�c13�e15 þ �e231�c33 � �e231 þ �e215�c33 � �e215 � �c213�e33 � 2�c13�e33 � 2�e15 � �e33 � �c11�e33 þ �c11�c33�e33

þ 2�e31�e15�c33 � 2�e31�e15 þ �c11 � 2�e31;

b2 ¼ �c213�e11 þ 2�c13�e11 þ 2�c13�e215 þ �e215 þ �e11 � 2�c11�e15 � �c11�e33 þ �c11�e11 � �c11�c33�e11 þ 2�c13�e31�e15 � �e231;

b3 ¼ �c11�e215 þ �c11�e11:

ð72Þ
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Substituting Eqs. (68) and (70) and q1 ¼ iq̂1 into Eq. (13), we obtain
d1 ¼ M1q̂1 þOðq̂31Þ; d2 ¼ i M2

n
þOðq̂21Þ

o
; d3 ¼ i M3

n
þOðq̂21Þ

o
;

f1 ¼ N1q̂1 þOðq̂31Þ; f2 ¼ i N2

n
þOðq̂21Þ

o
; f3 ¼ i N3

n
þOðq̂21Þ

o
;

ð73Þ
where
M1 ¼
�2�e15�e31 � �c11�e33 þ Q1�e33 � �e231 � �e215

�e33�c13 þ �e33 þ �e31 þ �e15
;

N1 ¼
�e31�c13 � �c11 þ Q1 þ �e15 þ �e31 þ �e15�c13

ð�e33�c13 þ �e33 þ �e31 þ �e15Þ
;

M2 ¼
ffiffiffiffiffiffi
Q2

p
ðQ2�e11�c11 � �e215 � 2�e15�e31 � �e231 � �c11�e33Þ

ð�c13�e11Q2 � �e33�c13 þ �e11Q2 � �e33 þ �e31�e15Q2 � �e31 þ �e215Q2 � �e15Þ
;

N2 ¼
ffiffiffiffiffiffi
Q2

p
ð�e31�c13 þ �e15�c13 þ �e31 þ �e15 þ Q2�c11�e15 � �c11Þ

ð�c13�e11Q2 � �e33�c13 þ �e11Q2 � �e33 þ �e31�e15Q2 � �e31 þ �e215Q2 � �e15Þ
;

M3 ¼
ffiffiffiffiffiffi
Q3

p
ðQ3�e11�c11 � �e215 � 2�e15�e31 � �e231 � �c11�e33Þ

ð�c13�e11Q3 � �e33�c13 þ �e11Q3 � �e33 þ �e31�e15Q3 � �e31 þ �e215Q3 � �e15Þ
;

N3 ¼
ffiffiffiffiffiffi
Q3

p
ð�e31�c13 þ �e15�c13 þ �e31 þ �e15 þ Q3�c11�e15 � �c11Þ

ð�c13�e11Q3 � �e33�c13 þ �e11Q3 � �e33 þ �e31�e15Q3 � �e31 þ �e215Q3 � �e15Þ
:

Furthermore, using Eqs. (70) and (73), as well setting q1 ¼ iq̂1, reveals that
H1 ¼ hð2Þ1 þOðq̂21Þ; H2 ¼ i hð2Þ2 q̂1
n

þOðq̂31Þ
o
; H3 ¼ i hð2Þ3 q̂1

n
þOðq̂31Þ

o
; ð74Þ
where
hð2Þ1 ¼ N3�c11
ffiffiffiffiffiffi
Q2

p
þ N2M3�c13 � N2c11

ffiffiffiffiffiffi
Q3

p
� N3M2�c13;

hð2Þ2 ¼ N1M3�c13 �
ffiffiffiffiffiffi
Q2

p
�c11N3M2 � N3�c11 �

ffiffiffiffiffiffi
Q2

p
�c11N3�e15N2 � N1�c11

ffiffiffiffiffiffi
Q3

p
�

ffiffiffiffiffiffi
Q2

p
M1�c13N3M2

�
ffiffiffiffiffiffi
Q2

p
N1�c11

ffiffiffiffiffiffi
Q3

p
M2 �M1�c13N3 þ

ffiffiffiffiffiffi
Q2

p
N1M3�c13�e15N2 �

ffiffiffiffiffiffi
Q2

p
N1�c11

ffiffiffiffiffiffi
Q3

p
�e15N2

�
ffiffiffiffiffiffi
Q2

p
M1�c13N3�e15N2 þ

ffiffiffiffiffiffi
Q2

p
N1M3�c13M2;

hð2Þ3 ¼ N1�c11
ffiffiffiffiffiffiffiffiffiffiffi
Q2Q3

p
�e15N3 �

ffiffiffiffiffiffi
Q3

p
N1M2�c13M3 þM1�c13N2 þ

ffiffiffiffiffiffi
Q3

p
M1�c13N2M3

þ
ffiffiffiffiffiffi
Q3

p
M1�c13N2�e15N3 þ N1�c11

ffiffiffiffiffiffiffiffiffiffiffi
Q2Q3

p
M3 �

ffiffiffiffiffiffi
Q3

p
N1M2�c13�e15N3 � N1M2�c13 þ

ffiffiffiffiffiffi
Q2

p
N1�c11

þ
ffiffiffiffiffiffi
Q3

p
�c11N2�e15N3 þ N2�c11 þ

ffiffiffiffiffiffi
Q3

p
�c11N2M3:

ð75Þ
Similar approximations for Gi ði ¼ 1; 2; 3Þ are also obtainable, namely
G1 ¼ i gð2Þ1 q̂1
n

þOðq̂31Þ
o
; G2 ¼ gð2Þ2 þOðq̂21Þ; G3 ¼ gð2Þ3 þOðq̂21Þ; ð76Þ
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where
gð2Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Q3Q2

p
f�e31N1�e215N3M2 þM1�c13M2�e11N3 �M1�c13M3�e11N2 � �e31N1M3�e11N2 �M1�c13�e215N2M3

� �c11M3�e11N2 � �c11�e215N2M3 þ �c11M2�e11N3 þ �e31N1M2�e11N3 þ �c11�e215N3M2 þM1�c13�e215N3M2

� �e31N1�e215N2M3g �
ffiffiffiffiffiffi
Q2

p
f�e31N1�e215N2 þM1�c13�e215N2 þM1�c13�e11N2 þ �c11�e215N2 þ �e31N1�e11N2

þ �c11�e11N2g þ
ffiffiffiffiffiffi
Q3

p
fM1�c13�e11N3 þ �c11�e11N3 þ �c11�e215N3 þM1�c13�e215N3 þ �e31N1�e11N3 þ �e31N1�e215N3g;

gð2Þ2 ¼ ��e215�c11
ffiffiffiffiffiffi
Q2

p ffiffiffiffiffiffi
Q3

p
N3 � �c11

ffiffiffiffiffiffi
Q2

p
�e11

ffiffiffiffiffiffi
Q3

p
N3 þM2�c13�e11

ffiffiffiffiffiffi
Q3

p
N3 þ �e31N2�e11

ffiffiffiffiffiffi
Q3

p
N3 þ �e215M2�c13

ffiffiffiffiffiffi
Q3

p
N3

þ �e215�e31N2

ffiffiffiffiffiffi
Q3

p
N3;

gð2Þ3 ¼ �e215�c11
ffiffiffiffiffiffi
Q3

p ffiffiffiffiffiffi
Q2

p
N2 �M3�c13�e11

ffiffiffiffiffiffi
Q2

p
N2 � �e215M3�c13

ffiffiffiffiffiffi
Q2

p
N2 � �e215�e31N3

ffiffiffiffiffiffi
Q2

p
N2 þ �c11

ffiffiffiffiffiffi
Q3

p
�e11

ffiffiffiffiffiffi
Q2

p
N2

� �e31N3�e11
ffiffiffiffiffiffi
Q2

p
N2:
3.2.1. Short circuit condition

Extensional waves: For extensional waves, the dispersion relation (21) has the following approximate
form:
hð2Þ1 tanð�kq̂1Þ þ hð2Þ2 q̂1 þ hð2Þ3 q̂1 � 0: ð77Þ
The above equation implies that for �k � 1
tanð�kq̂1Þ � Oðq̂1Þ; ð78Þ
from which we infer that
�kq̂1 ¼ np þ Kð1Þ
1
�k�1 þOð�k�2Þ: ð79Þ
It is now possible to substitute Eq. (78) into Eq. (77) to establish that
Kð1Þ
1 ¼ �ðhð2Þ2 þ hð2Þ3 Þ np

hð2Þ1

: ð80Þ
Substituting Eq. (79) into Eq. (68), we obtain the approximate expression of scaled phase velocity in the

following form
�v2 ¼ 1þ n2p2Q1
�k�2 þ 2npQ1K

ð1Þ
1
�k�3 þOð�k�4Þ: ð81Þ
Flexural waves: For flexural harmonics in the short wave limit, the dispersion Eq. (23) can be represented

in the following approximate form
�hð2Þ1 cotð�kq̂1Þ þ hð2Þ2 q̂1 þ hð2Þ3 q̂1 � 0: ð82Þ
From the above equation, it is seen that for �k � 1
cotð�kq̂1Þ � Oðq̂1Þ; ð83Þ

enabling us to deduce that
�kq̂1 ¼ n
�

� 1

2

�
p þ Kð1Þ

2
�k�1 þOð�k�2Þ ð84Þ
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and thus
Kð1Þ
2 ¼ � hð2Þ2

�
þ hð2Þ3

�
n
�

� 1

2

�
p

hð2Þ1

; ð85Þ
finally arriving at
�v2 ¼ 1þ n
�

� 1

2

�2

p2Q1
�k�2 þ 2 n

�
� 1

2

�
pQ1K

ð1Þ
2
�k�3 þOð�k�4Þ: ð86Þ
3.2.2. Open circuit condition

Extensional waves: For extensional waves, the dispersion relation takes the following approximate form
gð2Þ1 q̂1 cotð�kq̂1Þ þ gð2Þ2 þ gð2Þ3 � 0; ð87Þ
indicating that for �k � 1
cotð�kq̂1Þ � Oðq̂�1
1 Þ: ð88Þ
We may therefore infer that
�kq̂1 ¼ np þ Kð2Þ
1
�k�1 þOð�k�2Þ; ð89Þ
which after substituting Eq. (89) into Eq. (87) reveals that
Kð2Þ
1 ¼ �npgð2Þ1 =ðgð2Þ2 þ gð2Þ3 Þ: ð90Þ
Making use of Eq. (68) an approximate for the scaled phase velocity is obtainable, namely
�v2 ¼ 1þ n2p2Q1
�k�2 þ 2npQ1K

ð2Þ
1
�k�3 þOð�k�4Þ ð91Þ
Flexural waves: For the harmonics associated with flexural modes, the dispersion relation is of the

following approximate form
�gð2Þ1 q̂1 tanð�kq̂1Þ þ gð2Þ2 þ gð2Þ3 � 0: ð92Þ
From this equation we infer that for �k � 1
tanð�kq̂1Þ � Oðq̂�1
1 Þ; ð93Þ
from which we deduce that
�kq̂1 ¼ n
�

� 1

2

�
p þ Kð2Þ

2
�k�1 þOð�k�2Þ; ð94Þ
whence following similar lines of thought to previous, we get
Kð2Þ
2 ¼ � n

�
� 1

2

�
pgð2Þ1 =ðgð2Þ2 þ gð2Þ3 Þ: ð95Þ
Finally, an approximation for the scaled phase velocity for this case is obtained in the form
�v2 ¼ 1þ n
�

� 1

2

�2

p2Q1
�k�2 þ 2 n

�
� 1

2

�
pQ1K

ð2Þ
2
�k�3 þOð�k�4Þ: ð96Þ
In Figs. 14–17 various short wave approximations of the harmonics are shown against numerical

solutions. These indicate a good agreement over a surprisingly large wave number region.



Fig. 15. Comparison of asymptotic and numerical solutions in the short wave regime; flexural case, short circuit condition.

Fig. 14. Comparison of asymptotic and numerical solutions in the short wave regime; extensional case, short circuit condition.
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3.3. Short wavelength limit for the fundamental mode

3.3.1. Short circuit condition

In the short wave limit of the fundamental mode, �k ! 1 and �v ! 1 from below, with at least one of q1,
q2 and q3 real and the other two either real or forming a complex conjugate pair. Both dispersion relations

for the short circuit conditions, see Eqs. (21) and (23), become
H1 þ H2 þ H3 ¼ 0: ð97Þ
3.3.2. Open circuit condition

In the open circuit case, the analogue of (97) is given by
G1 þ G2 þ G3 ¼ 0: ð98Þ



Fig. 16. Comparison of asymptotic and numerical solutions in the short wave regime; extensional case, open circuit condition.

Fig. 17. Comparison of asymptotic and numerical solutions in the short wave regime; flexural case, open circuit condition.
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For piezo-electric materials, the expressions of Hi and Gi, i ¼ 1; 2; 3 are so complicated that it is difficult
to obtain a meaningful representation of the surface wave speed equation. However, from Eqs. (97) and

(98) the speed of surface wave can be obtained numerically. For PZT-4 piezo-electric ceramics, the scaled

surface wave speed is 0.950168 and 0.957768 for short circuit and open circuit conditions, respectively. The

effect of the two different electrical boundary conditions on the surface wave speed is small for the chosen

parameters. The existence of surface waves in piezo-electric substrates is far more complicated than its

elastic counterpart. So far, it has been proved that surface waves exist on a semi-infinite piezo-electric

substrate with short circuit boundary conditions under virtually any conditions. However, for open circuit

boundary conditions, far more stringent conditions are necessary to guarantee existence of surface waves
(see Peach, 2001). Analysis of dispersion relations for a plate then provides an alternative way to compute

surface wave speeds in piezo-electric media.



F.L. Guo, G.A. Rogerson / International Journal of Solids and Structures 41 (2004) 1539–1564 1561
4. Relative orders: displacements and electric potential

In this section we shall just establish the relative orders of the displacement components and electric

potential within the vicinity of the various types of cut-off frequencies which exist.
4.1. Short circuit condition

Extensional waves: In this case, the dimensionless displacements and electric potential are given by
�U
�W
�U

8<
:

9=
; ¼

X3
l¼1

Al sinhð�kqlnÞ
Aldl coshð�kqlnÞ
Alfl coshð�kqlnÞ

0
@

1
A; ð99Þ
where constants Al satisfy the following equations
X3
i¼l

ðql�c11 þ idl�c13 þ i�e31flÞ coshð�kqlÞAl ¼ 0;

X3
l¼1

ðiþ qldl þ qlfl�e15Þ sinhð�kqlÞAl ¼ 0;

X3
l¼1

fl coshð�kqlÞAl ¼ 0:

ð100Þ
(a) The first family of cut-off frequencies: In the vicinity of the first family of cut-off frequencies, we have

sinhð�kq2Þ � Oð1Þ and coshð�kq2Þ � Oð�k2Þ. Also we know sinhð�kq1Þ � Oð�kÞ and coshð�kq1Þ � Oð1Þ. Analyzing

the orders of all quantities occurring in Eq. (100), we find
a11ðOð�v2ÞÞ a12ðOð�kÞÞ a13ðOð�vÞÞ
a21ðOð�vÞÞ a22ðOð1ÞÞ a23ðOð�v2ÞÞ
a31ðOð�v2ÞÞ a32ðOð�k3ÞÞ a33ðOð�vÞÞ

0
B@

1
CA A1

A2

A3

0
@

1
A ¼ 0: ð101Þ
By comparison with Eq. (37), we conclude that A1 ¼ Oð�kÞA, A2 ¼ Oð�v2ÞA and A3 ¼ Oð1ÞA, where A is a

disposable constant. Furthermore, we can estimate the relative order of displacements and electric potential

by inserting Al, dl and fl into Eq. (99), indicating that
�U ¼ Oð�vÞA; �W ¼ Oð1ÞA; �U ¼ Oð1ÞA: ð102Þ
In this case the leading order scaled displacement is normal to the plane of the plate and this is in fact the

asymptotically leading quantity. The elastic motion is essentially thickness stretch resonance and we recall

that in this case the cut-off frequencies depend only on elastic constants.

(b) The second family of cut-off frequencies: Following the procedure just employed for the first family of

cut-off frequency, we obtain
�U ¼ Oð1ÞA; �W ¼ Oð�vÞA; �U ¼ Oð�vÞA: ð103Þ
In this case the leading order elastic displacement is in the plane of the plate and this type of motion is

essentially thickness shear resonance. Moreover, the scaled in-plane displacement is the same order as the
scaled electric potential and we recall that the cut-off frequencies are in this case dependent on both elastic

and electrical terms.
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Flexural waves: The method adopted above may now be used to estimate the relative orders of

dimensionless displacements and electric potential in the flexural case. For conciseness, we only present the

final results and omit details. In the vicinity of the first family of cut-off frequencies, we deduce
�U ¼ Oð�vÞA; �W ¼ Oð1ÞA; �U ¼ Oð1ÞA ð104Þ

In this case we recall that the cut-off frequencies depend only on elastic constants. Furthermore, we note

that the leading order displacement is in-plane, indicating shear resonance, and the scaled in-plane dis-

placement is a larger order than the scaled electric potential. For the second family of cut-off frequencies,

which in this case are dependent only on both elastic and electrical terms, the relative orders of displace-

ments and electric potential are as given by
�U ¼ Oð1ÞA; �W ¼ Oð�vÞA; �U ¼ Oð�vÞA: ð105Þ

In this case we have thickness stretch resonance, with the leading order scaled displacement the same

order as the scaled electric potential.

4.2. Open circuit condition

For brevity, we only present the final results of relative orders and omit derivation details.

Extensional waves

(a) First family of cut-off frequencies
�U ¼ Oð�vÞA; �W ¼ Oð1ÞA; �U ¼ Oð�v2ÞA: ð106Þ

We remark that in this case the cut-off frequencies were dependent on both elastic and electrical terms.

Moreover, in this case the scaled electric potential is much larger than either the in-plane or normal elastic
displacement.

(b) Second family of cut-off frequencies
�U ¼ Oð1ÞA; �W ¼ Oð�vÞA; �U ¼ Oð�vÞA: ð107Þ

This case is essentially shear resonance, with the in-plane scaled displacement the same order as the

scaled electric potential, the cut-off frequencies being functions of both elastic and electric constants.

Flexural waves

(a) First family of cut-off frequencies
�U ¼ Oð�vÞA; �W ¼ Oð1ÞA; �U ¼ Oð1ÞA: ð108Þ

In this case the situation is similar the flexural case for the short circuit conditions. In essence, the cut-off

frequencies are defined through elastic terms only and the scaled normal displacement asymptotically leads

both the scaled in-plane displacement and scaled electric potential, indicating thickness stretch resonance.

(b) Second family of cut-off frequencies
�U ¼ Oð1ÞA; �W ¼ Oð�vÞA; �U ¼ Oð�vÞA: ð109Þ

In this, the final case, we recall that the cut-off frequencies are depend on both elastic and electrical terms

and note that the in-plane scaled displacement is the leading order displacement and this is the same order

as the electric potential. The associated motion is essentially thickness shear resonance.
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In summary, there are three distinct patterns in the vicinity of cut-off frequencies. In the first case,
�U ¼ Oð�vÞA, �W ¼ Oð1ÞA and �U ¼ Oð1ÞA; in the second �U ¼ Oð1ÞA, �W ¼ Oð�vÞA and �U ¼ Oð�vÞA; and in the

third �U ¼ Oð�vÞA, �W ¼ Oð1ÞA and �U ¼ Oð�v2ÞA. We remark that in the first case, the scaled displacement in

the thickness direction is much larger than scaled electric potential, however in the third pattern it is the
latter which is much larger than the former. These properties suggest that an actuator may be more suitable

for working within frequencies associated with first case and a sensor within those associated with the third.
5. Concluding remarks

In this paper, a comprehensive analysis of the dispersion relations for Lamb waves in a piezo-electric

plate has been carried out. Numerical results, showing scaled phase speed, and scaled frequency, against

wave number are presented. Guided by these numerical calculations, asymptotic expansions, giving scaled

phase speed and scaled frequency as functions of wave number are derived in both the long and short wave

regimes. It is found that some families of cut-off frequencies are dependent only on elastic constants, while

others depend on both elastic and electrical material constants. Using these asymptotic results, the orders of
mechanical displacements and electrical potential are estimated for motion within the vicinity of the cut-off

frequencies. This estimation of the relative orders of displacements and electrical potential reveals that there

exist three distinct deformations patterns. In one of these deformation patterns, the scaled displacement in

the thickness direction is much larger than electric potential; in another the scaled electrical potential is one

order larger than the largest mechanical displacement, this being in the thickness direction. These properties

may be useful for the development and design of sensing and actuating devices. The asymptotic analysis has

also provided the necessary theoretical basis for the derivation of asymptotically approximate models to

elucidate motion near the cut-off frequencies. Such models have previously been derived for transversely
isotropic elastic plates, see Kaplunov et al. (2000). Work is in progress to derive similar models in the

present context and will be reported in due course.
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